Oligometastatic Lymph Node Recurrence Detected Using 18F-PSMA-1007 PET/CT in a Patient With Castration-resistant Prostate Cancer After Radiation Therapy

SHUNSUKE MORI1, TAIGO KATO1, TADASHI WATABE2, KOJI HATANO1, TOYOUMI ABE1, SHINICHIRO FUKUHARA1, HIROSHI KIUCHI1, RYOICHI IMAMURA1, MOTOHIIDE UEMURA1 and NORIO NONOMURA1

1Department of Urology, Osaka University Graduate School of Medicine, Osaka, Japan; 2Department of Nuclear Medicine and Tracer Kinetics, Osaka University Graduate School of Medicine, Osaka, Japan

Abstract. Background/Aim: Prostate cancer (PC) is one of the most common types of cancer in men worldwide. Most patients with metastatic PC are treated with androgen deprivation therapy (ADT) using luteinizing hormone-releasing hormone agonists and antagonists as first-line therapy. The majority of PC patients develop a castration-resistant PC (CRPC), which eventually leads to high mortality with poor prognosis, despite new targeted therapies. However, given that oligometastatic recurrence may enable local therapy in CRPC, accurate detection of metastatic lesions may improve clinical outcomes in patients with CRPC. Case Report: We report the case of an 83-year-old man with CRPC. 18 Fluorine-prostate-specific membrane antigen-1007 positron emission tomography/computed tomography (18F-PSMA-1007 PET/CT) revealed weak physiological PSMA accumulation in the prostate and strong accumulation not only in the internal iliac lymph node but also in the two obturator lymph nodes that could not be detected with conventional CT or magnetic resonance imaging. Prostatic re-biopsy revealed no prostate malignancy. Under the diagnosis of oligometastases in the pelvic lymph nodes, the patient underwent laparoscopic pelvic lymph node dissection, which revealed lymph node metastases in two obturator lymph nodes and the internal iliac lymph node, corresponding to the PSMA accumulation sites. The patient experienced at least 7 months of recurrence-free duration without additional treatment. Conclusion: This study indicates a novel approach to oligometastatic CRPC by means of accurate staging with 18F-PSMA-1007 PET/CT.

Correspondence to: Taigo Kato, MD, Ph.D., Department of Urology, Osaka University Graduate School of Medicine, 2-2 Yamadaoka, Suita, Osaka, 565-0871, Japan. Tel: +81 668793531, Fax: +81 668793534, e-mail: kato@uro.med.osaka-u.ac.jp

Key Words: Prostate cancer, castration-resistant prostate cancer, oligometastatic lymph node recurrence.

©2022 International Institute of Anticancer Research
www.iiar-anticancer.org

This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY-NC-ND) 4.0 international license (https://creativecommons.org/licenses/by-nc-nd/4.0).
PSMA-1007 PET/CT) has been reported to have a high
detection efficacy in the BCR of PC for identifying the sites of
recurrence or metastasis (7), and the diagnostic accuracy is
considered to be superior to conventional imaging (8-11). Fossati
et al. suggested that accurate detection of oligometastatic
recurrence may enable local therapy (12). However, there are no
reports on the clinical course after intervention for metastatic
sites detected using 18F-PSMA-1007 PET/CT.

Here, we report a successful case, wherein 18F-PSMA-
1007 PET/CT detected oligometastatic lymph node
recurrence in a patient with CRPC after radiation therapy. In
this case, the patient experienced no BCR for 7 months after
laparoscopic lymph node dissection, highlighting the clinical
significance of 18F-PSMA-1007 PET/CT for the precise
detection of recurrence in patients with PC.

Case Report

An 83-year-old man with no significant medical history
presented with an elevated PSA level (11 ng/ml). Transrectal
prostate needle biopsy revealed a pathologic diagnosis of
adenocarcinoma with a Gleason score of 7 (4+3) in 1 of 12
specimens. Based on the imaging results, the patient was
staged as cT1cN0M0. First, the patient received neoadjuvant
androgen deprivation therapy (ADT) for 9 months with a
luteinizing hormone-releasing hormone agonist and
subsequently underwent three-dimensional conformal radiation
therapy (3D-CRT, 72 Gy, 2 Gy/fraction, 5 fractions/week) to
the prostatic bed, resulting in a decrease in PSA level to a nadir
level (0.06 ng/ml). After 18 months of adjuvant hormonal
therapy with ADT, PSA level gradually elevated and reached
0.28 ng/ml, under the castration level of testosterone. Based on
a diagnosis of CRPC, the patient was administered
bicalutamide. Twenty months after starting combined androgen
blockade, bicalutamide was replaced with flutamide. However,
the PSA level increased to 4.1 ng/ml, 56 months after initiating
ADT, and the patient was referred to our hospital for further
treatment. CT and MRI showed lymphadenopathy (size of 15
mm) within the left obturator fossa (Figure 1A-C) with no
significant findings on bone scintigraphy.

We further performed 18F-PSMA-1007 PET/CT to detect
possible metastatic lesions other than lymphadenopathy
within the left obturator fossa. As a result, 18F-PSMA-1007
PET/CT showed weak physiological accumulation in the
prostate and strong accumulation not only in the internal iliac
lymph node but also in the two obturator lymph nodes that
could not be detected using CT or MRI (Figure 2A and B).
Prostatic re-biopsy revealed no prostate malignancy. Under
the diagnosis of oligometastases in the pelvic lymph nodes,
the patient underwent laparoscopic pelvic lymph node

Figure 1. Imaging tests using conventional computed tomography and magnetic resonance imaging. (A) Abdominal computed tomography
examination shows the obturator lymph node with a 15-mm diameter. (B, C) Abdominal magnetic resonance imaging showing signal changes in
the obturator lymph node. (B) T2-weighted image, (C) diffusion-weighted image.
dissection as curative treatment. Histopathological findings showed lymph node metastases of prostate cancer in the two obturator lymph nodes and the internal iliac lymph node corresponding to the PSMA accumulation sites (Figure 3A and B). Finally, the patient maintained a low PSA (0.01 ng/ml) for 7 months after the operation.

Discussion

Restaging PC is essential for determining the most appropriate treatment for BCR after radical therapy. PSMA is a unique membrane-bound glycoprotein, which is an excellent target for imaging and therapy because it is a cell surface protein presenting a large extracellular target and is expressed at levels that are about a thousand-fold greater than the minimal expression seen in other tissues, such as the kidney, proximal small intestine, and salivary gland (13). To date, 68Ga-PSMA-11, a well-known tracer, has shown high detection rates based on clinical and histological data (14, 15). In contrast, 18F-PSMA-1007 PET/CT facilitates the detection of local recurrence with decreased activity in the bladder because 18F-PSMA-1007 offers lower urinary clearance and longer half-life (16). Importantly, 18F-PSMA-1007 PET/CT has a positive predictive value of 91.3% and a negative predictive value of 97.9% for detecting positive lymph nodes (7), leading to accurate local therapy, including lymph node dissection or salvage radiotherapy to the metastatic lesion (7). However, since its recent introduction, only a few studies using 18F-PSMA-1007 PET/CT have validated this tracer capacity using histopathology (17).

In this study, we report a patient with CRPC who was diagnosed with lymph node oligometastases in the pelvis by performing 18F-PSMA-1007 PET/CT, which was not found in other imaging modalities. In previous studies, Sprute *et al.* reported an exceptional specificity of 99.5% for the lymph nodes (7). However, to date, there have been no reports regarding the transition of PSA after lymph node dissection detected using 18F-PSMA-1007 PET/CT.
Interestingly, the patient experienced at least 7 months of recurrence-free duration without additional treatment after lymph node dissection, which indicates the complete removal of malignant lymph nodes in metastatic CRPC, delaying the initiation of additional drug treatment. Considering that CRPC still has a poor prognosis despite the development of new therapies, our case may indicate a novel approach to oligometastatic CRPC by means of accurate staging with 18F-PSMA-1007 PET/CT.

In conclusion, we report the diagnostic accuracy of 18F-PSMA-1007 PET/CT after surgical dissection of oligometastatic lymph nodes. We believe that 18F-PSMA-1007 PET/CT may detect asymptomatic metastases, which may lead to early diagnosis, treatment, and survival advantage in patients with CRPC.

Conflicts of Interest

The Authors declare that they have no conflicts of interest.

Authors’ Contributions

S.M conducted the study, data collection and analysis and drafted the manuscript. T.K was responsible for the study conception and design and drafting of the manuscript. T.W, K.H, T.A, S.F, H.K, R.I, M.U, and N.N conducted the study and drafted and reviewed the manuscript. All Authors read and approved the final manuscript for submission.

Acknowledgements

The Authors thank the patient and his family, who participated in this case report, for their important contributions.

References

Received June 18, 2022
Revised July 17, 2022
Accepted July 18, 2022