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Abstract

Background/Aim: Prostate cancer (PCa) incidence varies significantly by race, with Black men experiencing nearly 1.8
times higher prevalence than White men in the USA. Current prostate specific antigen (PSA)-based diagnostics lack
specificity, and many machine learning models fail to consider racial differences in gene expression. This study proposes
arace-aware PCa detection framework using optimized feature selection to improve diagnostic accuracy and fairness.
Materials and Methods: RNAseq-Count-STAR and clinical phenotype data from TCGA (554 patients) were analyzed. A feature
selection pipeline integrating Differential Gene Expression analysis, Receiving Operating Characteristic (ROC) analysis, and
Gene-Set Enrichment Analysis identified a 9-gene subset strongly associated with the PCa clinical pathway. The model was
trained on White population data and validated on the Black population dataset using various data balancing techniques.
Results: The 9-gene logistic regression model achieved 95% accuracy in the White population and 96.8% accuracy
in the Black population. Fairness analysis indicated minimal disparity between groups (4% difference in demographic
parity, p=0.518). These results highlight the predictive value of race-specific biomarkers and demonstrate that
biologically informed feature selection improves both accuracy and interpretability.

Conclusion: This study introduces a race-specific PCa detection framework that improves diagnostic accuracy using targeted
biomarkers. It addresses misclassification risks in race-agnostic models and emphasizes the need for race-aware gene
expression in ML diagnostics. Beyond detection, it enables personalized treatment, advancing precision medicine in PCa care.
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Introduction

Prostate cancer (PCa) is one of the most prevalent cancers
in men, with approximately 1.6 million cases and 366,000
deaths annually (1). It ranks second in male cancer
incidence after lung cancer, contributing to 1,276,106 new
cases and 358,989 deaths (3.8% of all cancer-related male
deaths) in 2018 (2). During its early-stage PCa sometimes
exhibits no symptoms, making prompt identification and
therapy more difficult (2). PCa rates vary considerably
according to race, ethnicity and geography, with black
people in the US having a nearly 1.8-fold higher PCa rate
than white people (3, 4). Existing diagnostic methods such
as prostate specific antigen (PSA) testing face problems of
specificity, leading to a high incidence of false positives and
false negatives (5). Screening for PSA is associated with
over- diagnosis and unnecessary treatment complications
(6). For example, the use of a 3.0 ng/ml PSA threshold
results in a 2.6% false negative rate for all PCa and 0.5%
for clinically specific PCa (7). Given these constraints,
alternative approaches to improving the accuracy of
detection are being explored, with machine learning (ML)
emerging as a promising solution (8). ML algorithms can
improve predictive modelling by detecting complex
patterns in data and outperform traditional PSA testing in
terms of accuracy (9, 10). The integration of ML into
diagnostic frameworks aims to reduce false positives,
improve screening effectiveness and enable early
intervention (11). This shift from traditional to data-
driven diagnostics represents a significant advancement
in PCa detection, potentially improving survival rates and
patient outcomes (12). The rise of genomic data further
enhances PCa detection through gene expression profiling
where variations in DNA sequences can reveal disease
risks and inform treatment strategies (13). Leveraging
genomic insights also enables precision medicine, offering
personalized interventions beyond the capabilities of
imaging or PSA testing. This approach not only enhances
early detection but also optimizes treatment responses,
improving patient quality of life and minimizing
mistreatment (14, 15).

Diagnostic models for PCa have been developed using
a variety of methods, including advanced imaging,
microarray analysis and clinical data collection ML
techniques are increasingly used for their ability to
analyze complex data sets and improve the accuracy of
classification. Logistic regression, a widely used ML
algorithm for binary classification, was used in several
(16) logistic
regression reached an accuracy of 0.91, second only to

comparative PCa studies. In model

multiple linear regression (0.96). The model (17)
reported an area under the curve (AUC) score of 0.77,
which was higher than the PSA score (0.67). Similarly,
model (18) evaluated different ML techniques on clinical
data and identified the multi-layer perception (MLP) as
the best performer with an accuracy of 0.97. The gene
expression-based models further improved the detection
of PCa. Model (19) analyzed datasets containing genes,
exon, exon cross-linking and isoform data and applied
dimensionality reduction techniques such as Principal
Component Analysis (PCA) and Recursive Feature
Elimination (RFE). The PCA used for the combined
datasets resulted in the highest accuracy and precision.
Model (20) used K-Nearest-Neighbors (KNN), Support
Vector Machine (SVM), Linear Discriminant Analysis
(LDA) and Decision Tree Classifier (DTC) models in
combination with a selection of variables using a signal-
to-noise ratio (SNR) and a correlation coefficient. Their
model achieved 100 percent accuracy in classifying the
four selected genes and 85 percent accuracy in classifying
PCa. Despite promising results, current models do not
account for differences in gene expression between racial
groups. The PCa biomarkers vary between populations
due to genetic variation, which is a key consideration for
diagnostic accuracy. For example, autopsy studies showed
a higher incidence of high grade prostatic intraepithelial
neoplasia in African American men compared to
European American men (21). Despite progress in the
detection of PCa through gene expression, no published
study has adopted a race-specific approach using gene
expression data. While the model (19) and model (20)
addressed high dimensionality and class imbalance, they
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Table I. Summary of related studies and contributions of this work.

Research

Their findings

Our contribution

Mohammed et al. (16)

Busetto et al. (17)

Erdem et al. (18)

Casey et al. (19)

Bouazza et al. (20)

Used logistic regression for binary classification in PCa
diagnosis, achieving 0.91 accuracy, but did not explore
higher-dimensional or race-specific models.

Applied logistic regression with an AUC of 0.77,
outperforming PSA (0.67), but lacked genomic

data integration.

Compared ML algorithms on clinical data, identifying
MLP as the best performer with 0.97 accuracy, but did
not use gene expression or race-specific approaches.
Analyzed gene, exon, and isoform data using PCA and
RFE for dimensionality reduction but did not include
racial variations or use DESeq2 for DGE.

Used KNN, SVM, LDA, and DTC with SNR and correlation
coefficients to select variables, achieving high accuracy,

Proposed a race-specific ML model for PCa diagnosis,
incorporating differential gene expression (DGE) and
enrichment analysis for optimized feature selection.
Improved classification accuracy by integrating gene
expression data with race-specific consideration and
advanced feature selection.

Employed ML with gene expression profiles and DGE
to enhance diagnostic accuracy across racially
diverse populations.

Applied DESeq2 for DGE-based feature selection

and SMOTE for class balancing, addressing both

high dimensionality and racial bias.

Developed a comprehensive race-aware pipeline
using DESeq2, gene enrichment analysis, and

but without race-specific analysis or DGE methods.

SMOTE to ensure equitable and accurate PCa
diagnosis across populations.

PCa: Prostate cancer; ML: machine learning; DGE: differential gene expression; AUC: area under curve; PSA: prostate specific antigen; MLP: multi-
layer perceptron; PCA: principal component analysis; RFE: recursive feature elimination; KNN: K-Nearest-Neighbors; SVM: support vector machine;

LDA: linear discriminant analysis; DTC: decision tree classifiers.

did not include racial differences or use a differential gene
expression analysis (DGE) approach using the DESeq2
tool to select the characteristics. The model (19) used
SMOTE to balance the class, but did not consider race-
related factors, which may limit clinical relevance. To
bridge this gap, we propose a race-specific ML model for
PCa diagnosis, which integrates the optimization of the
selection of features by means of DGE and enrichment
analysis of the gene pool. In addition, balancing
techniques such as SMOTE will be used to improve the
performance of the model and to ensure more accurate
and equitable diagnostic results in a variety of
populations. For more details, please check Table I.

This study proposes a robust logistic regression
approach with optimized feature selection for PCa
diagnosis with the goal of improving early detection and
removing bias between race specific biomarkers, which
further enhances its accuracy. This approach improves
effectiveness and robustness by separating data by race,
eradicating race bias and utilizing optimized feature
selection through gene-set enrichment analysis which
later is being used for logistic regression modelling. The
combination of race-specific datasets, optimized feature

selection and logistic regression modelling minimizes bias
and offers a robust diagnostic method for PCa, thereby
enhancing its ability for early detection.

Materials and Methods

The pipeline of our study is described in Figure 1. The
methods consist of data collection, data preprocessing,
feature selection, data up sampling, data splitting,
hyperparameter tuning, training & testing.

Data collection. This study retrieved data from the open-
source TCGA database, hosted by the University of
California, Santa Cruz, on August 25, 2024. Two key
datasets were used in this research: the RNAseq STAR -
Counts dataset and the GDC TCGA Phenotypes dataset.
The RNAseq dataset contains gene expression information
obtained through sequencing. The count data has been
pre-normalized using the log2(count+1) method,
providing greater depth into transcriptional activity across
different genes. This normalization allows for the
identification of genes associated with specific conditions,
such as cancer.
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Figure 1. Overview of the research pipeline utilized in this study.

Preprocessing of gene expression data. First, both data need
to be preprocessed separately first due to the different
formats of data structure. For RNASeq STAR-Count we had
to proceed with the data cleaning and imputation of
missing values, and for the Phenotypes data we had to
check thoroughly whether the feature is reliable and
usable for the data merging later. After the data cleaning
process, we matched the RNASeq STAR-Count data with
phenotype data by matching its Ensembl_ID to filter the
RNASeq STAR-Count to have the race specific dataset; for
instance, we separated the data into White, Black, Native
American, and Asian. We processed our data using Python
version 3.12.7.

Feature selection. Features for model construction were
selected using DGEs and Receiver Operating Characteristic

(ROC) analysis to identify the most significant genes (22).
DGE analysis was performed using PyDESeq2 version
0.4.10. The generated DGE list was filtered with cutoff
thresholds of baseMean =10 and p-value <0.05 to exclude
outlier genes, and those with baseMean <10 were
excluded from further analysis. Genes were classified as
up-regulated or down-regulated based on positive or
negative log, Fold Change, respectively (23). The filtered
DGEs were then passed to ROC analysis to identify the
most significant genes. A higher ROC value indicates a
greater likelihood of true positive predictions, and genes
with an area under the curve (AUC) >0.9 were selected, as
previous studies suggest that genes with AUC values above
this threshold are the most predictive for modeling (24).
The selected genes were further refined through Gene-Set
Enrichment Analysis (GSEA), with filtering against the
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Table II. Feature selection, data balancing and splitting scenario for this research.

Feature selection

Train-test splitting

Balancing techniques

No Balancing, RandomUnderSampler, SMOTE, RandomOversampler,
TOMEKLinks, BorderlineSMOTE, ADASYN, SVMSMOTE, KMeansSMOTE

No Balancing, RandomUnderSampler, SMOTE, RandomOversampler,
TOMEKLinks, BorderlineSMOTE, ADASYN, SVMSMOTE, KMeansSMOTE

No Balancing, RandomUnderSampler, SMOTE, RandomOversampler,
TOMEKLinks, BorderlineSMOTE, ADASYN, SVMSMOTE, KMeansSMOTE

No Balancing, RandomUnderSampler, SMOTE, RandomOversampler,
TOMEKLinks, BorderlineSMOTE, ADASYN, SVMSMOTE, KMeansSMOTE

DGE (basemean 210 & padj <0.05) 80/20
70/30
60/40
DGE (basemean 210 & padj <0.05 & 80/20
log2FoldChange >0.35) 70/30
60/40
DGE (basemean 210 & padj <0.05 & 80/20
log2FoldChange >0.4) 70/30
60/40
DGE (basemean 210 & padj <0.05) + 80/20
ROC Analysis + Genes Validation 70/30
60/40

DGE: Differential gene expression; padj: p-adjusted value; ROC: receiver operating characteristic; SMOTE: synthetic minority over-sampling
technique; ADASYN: adaptive synthetic sampling; SVMSMOTE: support vector machine SMOTE.

Kyoto Encyclopedia of Genes and Genomes (KEGG) and
GSEA databases to ensure their relevance to clinical PCa
pathways (25).

The gene list, initially formatted using Ensembl IDs,
was converted to gene symbols using the SynGO online
converter (26) After conversion, the gene list was checked
against PCa clinical pathways in the GSEA-MSigDB
database (27). Genes identified in these clinical pathways
were selected for final model construction. This approach,
integrating DGE filtering, ROC analysis, and pathway
enrichment, ensures that the genes selected are both
biologically relevant and predictive, providing a robust
foundation for model development.

Data balancing & splitting. After completing the feature
selection process, the dataset was found to have a
significant class imbalance, with a cancer-to-normal
sample ratio of approximately 9:1. To effectively address
this imbalance, we first performed stratified train-test
splits at ratios of 60/40, 70/30, and 80/20. Stratification
ensured that the class distribution was preserved in both
training and testing sets, while the test set was kept
unchanged to provide a realistic and unbiased evaluation
of model performance. Various resampling techniques

were then applied exclusively to the training data to
rebalance it. These methods included Random Over
Sampling (ROS), Random Under Sampling (RUS),
Synthetic Minority Over-sampling Technique (SMOTE),
Borderline SMOTE, TOMEK Links, Adaptive Synthetic
Sampling (ADASYN), KMeansSMOTE, and Support Vector
Machine SMOTE (SVMSMOTE). The goal was to adjust the
class distribution in the training set so that cancer samples
constituted approximately 66.66% and normal samples
33.33% of the data, corresponding to a sampling strategy
of 0.3. This careful rebalancing aimed to improve the
classifier’s ability to learn patterns from the minority
cancer class while preserving the integrity of the test data
for valid model assessment (Table II).

Model construction. The baseline model used in this study
is logistic regression, selected for its straightforward
approach and interpretability qualities that are
particularly valuable when analyzing gene expression data
for prostate cancer detection. To benchmark the
performance of this baseline model, we compared it with
three widely used classifiers: Random Forest (RF),
Support Vector Classifier (SVC), and K-Nearest Neighbors

(KNN). These comparison models were implemented to
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evaluate how well logistic regression performs under
optimal conditions. Specifically, after identifying the top-
performing configuration for logistic regression, we
applied the same optimal settings to the other classifiers
to ensure a fair performance benchmark. All models were
trained and tested using identical preprocessing steps,
including normalization and feature selection, to maintain
consistency in evaluation.

To ensure the reliability of the trained models,
particularly in terms of statistical robustness, the training
was performed using data from the White race cohort,
which represented the largest population group in the
dataset. This choice provides a more stable training
foundation, reduces the risk of overfitting due to limited
sample sizes, and enhances the generalizability of the
findings within the context of the available data.

Additionally, for each given model, Hyperparameter
Tuning is applied for improving the model’s performance.
More details on hyperparameter grid are shown on Table I11.

Model evaluation. In this study, we evaluate model
performance using a comprehensive classification report
that includes Precision, Recall (Sensitivity), Accuracy, and
F1-score, supported by a confusion matrix for detailed
error analysis. Precision measures the proportion of
correct positive predictions, while Recall assesses the
model’s ability to detect all relevant positive instances.
Accuracy reflects the overall correctness of predictions
across all classes, and the F1-score provides a balanced
harmonic mean of Precision and Recall, accounting for
both false positives and false negatives. These metrics
collectively help identify issues such as underfitting or
overfitting by ensuring no single aspect of performance is
overlooked. The confusion matrix further visualizes true
positives, true negatives, false positives, and false
negatives, offering an intuitive view of classification
outcomes. Additionally, we assess the area under the
receiver operating characteristic curve (AUC-ROC), which
quantifies the model’s ability to distinguish between
classes across various threshold settings, with higher
values indicating better discriminatory power.

Table III. Hyperparameter grid for Logistic Regression (LR), Random
Forest (RF), Support Vector Classifier (SVC), and K-Nearest Neighbors
(KNN) classifiers.

Classifier Hyperparameters Values/Options

LR C [0.1,1, 10]
solver ['liblinear’, 'saga’, 'lbfgs']
penalty ['12"]

max_iter [1000]
RF n_estimators [100, 200]
max_depth [None, 10, 20]
min_samples_split [2,5]
min_samples_leaf [1,2]

SvC C [0.1,1,10]
kernel ['linear’, 'rbf']
gamma ['scale’, 'auto']

KNN n_neighbors [3,5,7]
weights ['uniform’, 'distance']
metric ['euclidean’, 'manhattan']

To ensure ethical and equitable model deployment,
fairness metrics were also incorporated to evaluate
whether the model performs consistently across different
subgroups or demographics, helping to detect potential
biases. Specifically, we assessed Demographic Parity,
which evaluates whether positive prediction rates are
equally distributed across demographic groups, and Equal
Opportunity, which examines whether true positive rates
are consistent across those groups. These fairness
assessments enable a more responsible evaluation of
model outcomes and highlight any disparities that may
require mitigation. All performance evaluations were
conducted using scikit-learn version 1.5.1. From all tested
scenarios, the top five models exhibiting the best overall
performance were selected for further benchmarking.
These selected models were then evaluated using different
dataset cohorts and a variety of classifier algorithms to
validate their robustness and generalizability across
diverse conditions.

Results and Discussion

Biomarker selection for PCa classification. The feature
selection process across the four scenarios resulted in
subsets of 4, 9, 19, and 139 as shown in Table IV. These
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Table IV. Gene subsets identified through feature selection methods.

Feature selection scenario

Identified genes

DGE with basemean 210 & padj <0.05 + ROC analysis + MsigDB validation

DGE with basemean 210 & padj <0.05 & abs(log2FoldChange) >0.4
DGE with basemean 210 & padj <0.05 & abs(log2FoldChange) >0.35
DGE with basemean 210 & padj <0.05 & abs(log2FoldChange) >0.4

9
139
19
4

DGE: Differential gene expression; padj: p-adjusted value; ROC: receiver operating characteristic; MsigDB: molecular signature database; abs:

absolute.

gene subsets identified as the most significant genes for
PCa classification. These selected genes were determined
based on their relevance to distinguishing between
cancerous and non-cancerous samples.

Specifically for the first scenario, we initially obtained
a list of 13 filtered genes by using a combination of DGE
analysis, ROC analysis, the results of this analysis can be
seen in Table V. This gene was then converted to a gene
symbol for Gene-Set Enrichment Analysis.

Using the converted gene symbols, a GSEA was
performed against the MSigDB database. As shown in Figure
2, the most significant overlap occurred with the
LIU_PROSTATE_CANCER_DN gene set (9 overlapping genes
out of 493; p=2.39x107'5, FDRq=2.05x10""'), which contains
genes down-regulated in PCa samples. This strongly supports
the biological relevance of the selected biomarkers to PCa.
Importantly, this overlap confirms that the top-ranked genes
in our study are not only statistically significant but are also
part of a known PCa expression signature, reinforcing their
validity as potential diagnostic targets.

Additionally, the gene list showed enrichment in other
cancer-related pathways, including DELYS_THYROID_
CANCER DN and SENESE_HDAC1 _AND_HDAC2_TARGETS_
DN, both with FDRq <0.001. These pathways are associated
with thyroid carcinoma and epigenetic regulation in
osteosarcoma, respectively. Such overlaps suggest that the
selected genes may be involved in broader cancer-related
regulatory mechanisms, including cellular differentiation,
chromatin remodeling, and transcriptional repression. The
presence of significant overlaps with multiple cancer
modules (e.g., MODULE_11, MODULE_100) and brain tumor
gene sets (eg., JOHANSSON_BRAIN_CANCER_EARLY_

Table V. Conversion of Ensembl IDs to gene symbols for selected genes.

Gene symbol (ENS) Converted gene symbol

ENSG00000244509.3 APOBEC3C
ENSG00000170271.9 CLU
ENSG00000084207.14 CRYAB
ENSG00000152137.5 FAM107A
ENSG00000168077.12 FAXDC2
ENSG00000066468.19 FGFR2
ENSG00000139926.14 FRMD6
ENSG00000109846.6 GJA1
ENSG00000134202.9 GSTM3
ENSG00000065534.17 GSTP1
ENSG00000152661.7 HSPB8
ENSG00000120885.18 MYLK
ENSG00000168309.15 SCARA3

VS_LATE) further emphasizes the potential role of these
genes in generalized tumor biology.

Overall, this analysis not only validates the biological
importance of the final 9-gene panel but also highlights
their involvement in core oncogenic processes across
multiple cancer types. These results strengthen the
justification for using these biomarkers in a PCa diagnostic
context and support their investigation for broader
translational relevance.

Apart from GSEA, we also conducted a statistical
analysis using Random Forest, which yielded results
consistent with those of GSEA. Among 13 genes, 9 genes
were found statistically significant as shown in Figure 3.

The final subset of nine genes GJA1, FRMD6, FAM1074,
HSPBS8, GSTP1, MYLK, GSTM3, CRYAB, and FGFRZ not only
demonstrated statistical significance (adjusted p-value
<0.05, AUC >0.9), but also show strong biological relevance
to prostate cancer pathology. GJA1 (Connexin 43) has been
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# Genes
Gene Set Name [# Genes (K)] Description Ov::lap k/K p-value FDRq-value E
(k)
LIU_PROSTATE_CANCER_DN [493] Genes down-regulated in 9 B 539615 2.05 el
prostate cancer samples.
PICCALUGA_ANGIOIMMUNOBLASTIC_LYMPHOMA_  Up-regulated genes in 5 [ - 1535
MA_UP [211] angioimmunoblastic
lymphoma (AILT)
compared to normal T
lymphocytes.
JOHANSSON_BRAIN_CANCER_EARLY_VS_LATE_D | Genes down-regulated in 3 | r—| 2.72 &7 4.65 4
E_DN [43] early vs late brain tumors
induced by retroviral
delivery of PDGFB
[GenelD=5155].
MODULE_11 [540] Genes in the cancer 5 I 351e7 4.65 &4
module 11.
MODULE_100 [544] Genes in the cancer 5 I 5957 4.65 4
module 100.
MODULE_137 [546] CNS genes. 5 I s03e7 4.65e™
MODULE_66 [552] Genes in the cancer 5 i 4.25¢7 4.65e™
module 66.
GAVISH_3CA_MALIGNANT_METAPROGRAM_25_AS Genes upregulated in 3 = 4.32 7 4.65 o~
_ASTROCYTES [50] subsets of cells of & given
type within various tumors
DELYS_THYROID_CANCER_DN [233] Genes down-regulated in 4 [ | 6.01 e/ 5.63 ¢
papillary thyroid carcinoma
(PTC) compared to normal
tissue.
SENESE_HDAC1_AND_HDAC2_TARGETS_DN [238] Genes down-regulatedin 4 | 6.54 &7 5.63 &4

U20S cells (osteosarcoma)
upon knockdown of both
HDAC1 and HDAC2
[GenelD=3065;3066] by
RNAI.

Figure 2. Gene Set Enrichment Analysis (GSEA) using the MSigDB database revealed a significant enrichment of overlapping genes associated with cancer-
related clinical pathways, underscoring the biological relevance of the identified gene signatures in the context of tumor progression and diagnosis.

implicated in tumor suppression and altered expression
across multiple cancers, including PCa, due to its role in gap
junction communication (29). FRMD6, a regulator of cell
polarity, is linked to growth control and favorable
outcomes in certain cancers (30). FAM107A has emerged
as a tumor suppressor in PCa and is frequently down-
regulated in aggressive cases (31). HSPBS8, a small heat
shock protein, facilitates cancer progression via the

JAK/STAT3 pathway and is known to be up-regulated in
PCa (32). GSTP1, perhaps one of the most established PCa
biomarkers, shows differential methylation and expression
patterns between racial groups and plays a crucial role in
detoxification (33). MYLK has been identified as a
predictive marker for PCa recurrence (34), while GSTM3,
another detoxification enzyme, has shown polymorphisms
associated with prostate cancer risk (35). CRYAB, known
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Figure 3. Top nine genes that are the most important based on statistical analysis.
Table VI. Genes overlapping between enrichment and statistical analyses.

Overlapped genes from statistical analysis and enrichment analysis
GJA1

for its anti-apoptotic functions, and FGFR2, a regulator of
cell proliferation and angiogenesis, are both involved in
tumorigenic processes and were found to be significantly
altered in prostate malignancies (36, 37). For more details ~ ENSG00000109846.6
ENSG00000139926.14 FRMD6
on the overlapped genes, please check Table VI. ENSG00000152137.5 FAM107A
Collectively, these genes reflect diverse biological = ENSG00000152661.7 HSPB8
ENSG00000065534.17 GSTP1
ENSG00000120885.18 MYLK
ENSG00000134202.9 GSTM3
ENSG00000084207.14 CRYAB
FGFR2

ENSG00000066468.19

processes including apoptosis regulation, stress response,

detoxification, and growth signaling, aligning well with

known mechanisms of prostate cancer progression. Their
identification through integrated DGE, ROC, and GSEA

cancer pathways, several additional genes identified in

also warrant biological

methods further supports their utility not only in
classification tasks but also as potential candidates for
biomarker-driven therapeutic interventions.
While our final model included 9 key genes with strong  earlier filtering stages
diagnostic performance and enrichment in prostate consideration. For instance, Clusterin (CLU) has been
728
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Table VII. Top five logistic regression models in the White population.

No Scenario Balancing technique Data splitting ~ Accuracy (%)  F1-Score (%) Precision (%) Recall (%) AUC
1 DGE+ROC+GSEA SVMSmote 60/40 95 97.1 96.7 97.5 0.96
2 DGE+ROC+GSEA Random Oversampler 70/30 95 97.5 97.5 97.5 0.95
3 DGE+ROC+GSEA Random Oversampler 80/20 94.5 95.2 97.5 97 0.92
4 DGE+ROC+GSEA SMOTE 80/20 94.5 96 95 97.5 0.92
5 DGE+ROC+GSEA BorderlineSMOTE 80/20 94 97 95.2 98.7 0.92
DGE: Differential gene expression; padj: p-adjusted value; ROC: receiver operating characteristic; GSEA: gene set enrichment analysis.

Table VIIL Top five logistic regression models in the Black population.

No Scenario Balancing technique Data splitting ~ Accuracy (%)  F1-Score (%) Precision (%) Recall (%) AUC
1 DGE+ROC+GSEA RandomUnderSampler 80/20 96.8 96.4 98.2 98.7 0.99
2 DGE+ROC+GSEA None 80/20 96.8 98.2 98.2 97.5 0.98
3 DGE+ROC+GSEA SMOTE 80/20 96.8 96.4 98.2 97.5 0.99
4 DGE+ROC+GSEA TomekLinks 80/20 95.3 94.7 97.2 98.7 0.99
5 DGE+ROC+GSEA RandomUnderSampler 60/40 92.1 95 92 98 0.97

DGE: Differential gene expression; padj: p-adjusted value; ROC: receiver operating characteristic; GSEA: gene set enrichment analysis; AUC: area

under curve.

implicated in apoptotic regulation and treatment
resistance across several cancers, including prostate
tumors. APOBEC3C, part of the APOBEC family of cytidine
deaminases, has been associated with somatic mutation
processes and may influence tumor heterogeneity.
Similarly, SCARA3, although not retained in the final
model, plays a role in oxidative stress response and has
been shown to modulate tumor cell survival in other
malignancies. Although these genes did not meet the final
inclusion criteria based on ROC or enrichment thresholds,
their presence in early-stage filters suggests potential
relevance, and further biological validation could uncover
additional roles in PCa progression or resistance
mechanisms.

Performance on white population. Using the model
construction scenario, there is a significant result in our
PCa diagnostic models. The top 5 models are presented in
Table VIL

The performance of the model on the White population
indicates that the best-performing model, trained using nine
genes, achieved an accuracy of 95% and an AUC of 0.96. The

high accuracy suggests that the model is highly effective at
correctly classifying individuals as either having prostate
cancer or not. Meanwhile, the AUC of 0.96 reflects the
model’s excellent ability to distinguish between cancer and
normal samples across all possible classification thresholds
indicating strong discriminative power, even when the
decision boundary shifts. These genes significantly overlap
with the PCa clinical pathways, as demonstrated by GSEA,
supporting their biological relevance. This finding suggests
that these genes play a crucial role in PCa progression and
may serve as key biomarkers for accurate classification. The
improved model performance underscores the importance
of biologically informed feature selection, where training on
disease-specific biomarkers enhances predictive accuracy.
Furthermore, this result reinforces the potential of precision
medicine approaches, demonstrating that selecting the most
relevant molecular features could lead to more effective and
tailored diagnostic models for specific populations.

Performance on Black population. Further evaluation of the
Black population identified the top five best-performing
models, as presented in Table VIII.
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When testing the model on the Black population
dataset, a similar performance trend was observed, with
the best-performing model again derived from the 9-gene
subset, achieving an impressive accuracy of 96.8%.
Notably, this accuracy surpasses that observed in the
White population. This discrepancy may be attributed to
the smaller sample size of the Black cohort, which can lead
to overrepresentation and potentially inflate performance
metrics. Nevertheless, these findings reinforce the earlier
results, confirming that this specific set of biomarkers
plays a pivotal role in enhancing model accuracy for
prostate cancer detection. The consistent performance
across racial groups underscores the strong predictive
power of these nine genes, positioning them as robust and
biomarkers for

generalizable prostate

classification. Furthermore, this outcome highlights the

cancer
critical importance of targeted feature selection,
demonstrating that training with biologically relevant
genes not only improves predictive performance but also
reduces dimensionality resulting in a more efficient and
interpretable model. The model’s best AUC score reached
an outstanding 0.99, which is further evidence of its strong
discriminative capability.

Performance comparison with alternative classifiers. After
identifying the top-performing model scenarios for both
populations, we benchmarked these scenarios against
alternative classifiers. For the White population, we used
SVMSMOTE with nine selected genes and a 60/40 train-
test split. For the Black population, we employed
RandomUnderSampler with an 80/20 split as the baseline
for comparison. The result can be seen in Table IX.

After comparing three different classifiers with our
baseline model (logistic regression), the results show that
logistic regression still outperforms the others as shown
in Table X. Although SVC achieved a similar accuracy,
logistic regression yielded a slightly higher AUC score,
outperforming SVC. A similar result was observed in the
Black population, where logistic regression also
outperformed the other classifiers, further reinforcing the
robustness of our baseline model.

Table IX. Classifier performance comparison in the White population.

No Classifier Accuracy F1-Score Precision Recall AUC
(%) (%) (%) (%)

1 LR 95.6 97.1 96.7 97.5 0.96

2 SvC 95.6 97.2 97.5 96.9 0.95

3 RF 94.5 96.9 96.4 97.5 091

4 KNN 94.5 96.9 96.4 97.5 0.93

LR: Logistic regression; SVC: support vector classifier; RF: random
forest; KNN: K-Nearest-Neighbors; AUC: area under curve.

Table X. Classifier performance comparison in the Black population.

No Classifier Accuracy F1-Score Precision Recall AUC
(%) (%) (%) (%)

1 LR 96.8 98.4 98.2 98..7 0.99

2 SVC 93.7 96.4 98.1 94.7 0.98

3 RF 95.3 96.9 96.4 97.5 0.99

4 KNN 94.5 96.5 94.8 98.2 0.98

LR: Logistic regression; SVC: support vector classifier; RF: random
forest; KNN: K-Nearest-Neighbors; AUC: area under curve.

Demographic parity assessment. We evaluated the
fairness of our top prostate cancer detection model across
racial groups using Demographic Parity. The model achieved
high detection rates for both White (90%) and Black (86%)
cohorts, with a 4% difference, as shown in Figure 4. A chi-
square test of independence produced a p-value of 0.518,
indicating this difference is not statistically significant
(p>0.05) and likely due to random variation rather than
algorithmic bias. Although statistically non-significant, the
4% disparity warrants clinical consideration given known
prostate cancer outcome differences across races. The
model’s conservative detection threshold helps minimize
false negatives, which are critical in screening settings, and
ensures comparable treatment across demographics.
the model
providing equitable positive
prediction rates for White and Black patients when clinical

From a fair perspective, satisfies

Demographic Parity,

indicators warrant. Observed differences are more likely
driven by genuine clinical, genetic, or sociodemographic
factors rather than discrimination, supporting the model’s
responsible clinical use.
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Figure 4. Demographic parity result across different population datasets.
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Figure 5. Equal opportunity assessment results, showing that the true
positive rate (TPR) on white cohort is higher than black cohort by 2%.

Table XI. Comparative analysis with existing prostate cancer diagnostic models.

Source Method

Number of features

Data balancing Best result

Mohammed et al. (16) Logistic regression Not using gene X Acc: 091

Busetto et al. (17) Multiple machine learning model Not using gene X Achieved: 0.77 AUC Score
Erdem and Bozkurt (18) Multi-layer perceptron Not using gene X Acc: 0.97

Casey et al. (19) RFE 20 v Acc: 0.96

Bouazza et al. (20) KNN 29 X Acc: 0.85

Proposed model Logistic regression - DGE - 9 v Acc: 0.95 in White population and

Race specific

Acc: 0.96 in Black population with
both AUC higher than 0.95

DGE: Differential gene expression; RFE: recursive feature elimination; KNN: K-Nearest Neighbors; AUC: area under curve; Acc: accuracy.

Equal opportunity assessment. Furthermore, we evaluated
Equal Opportunity to assess fairness with respect to true
positive rates (TPR) across racial groups. The TPR was
97% for the White cohort and 95% for the Black cohort,
yielding a difference of 2%. This indicates that the model's
ability to correctly identify cancer cases is relatively
balanced across groups. Even though statistically the
model is slightly more effective in detecting cancer cases
in white cohort, the gap is small (2%), which is generally
acceptable (Figure 5).

Comparison with existing models. To demonstrate the
effectiveness of our approach, we conducted a
comparative analysis with relevant existing research, as

presented in Table XI. While most prior studies rely on
imaging data, those utilizing gene expression typically
involve larger gene sets, ranging from 20 to 29 genes. In
contrast, our proposed model achieves comparable or
even superior diagnostic accuracy using only nine genes,
emphasizing its efficiency and suitability for clinical
application. Moreover, our framework uniquely accounts
for racial disparities and incorporates fairness metrics,
ensuring both high performance and equitable outcomes
across diverse populations. Our research further
strengthens its impact through rigorous biomarker
selection and the integration of race-aware modeling,
which together enhance both the diagnostic precision and
the fairness of the model in real-world clinical settings.

731



Agustriawan et al: Logistic Regression With Optimized Gene Features for Race-specific Prostate Cancer Diagnosis

Limitations & future works. While this study demonstrates
promising results in prostate cancer (PCa) diagnosis, several
limitations must be acknowledged. Despite employing a
thorough feature selection method, the dataset suffers from
significant class imbalance, with 414 cancer samples
compared to only 44 normal samples, a roughly 9:1 ratio.
This heavy imbalance may adversely affect the model’s
accuracy, particularly for the underrepresented normal class.
Additionally, the cross-validation performed on the Black
population subset is limited by a small sample size of only
64 individuals, which may lead to overly optimistic results
due to easier data separability and reduced generalizability.
Another limitation is the reliance on secondary data from
the TCGA repository, which restricts the scope and diversity
of experiments. The diagnostic model could be substantially
improved by incorporating primary gene expression data
collected directly from clinical hospital sources, reflecting
more varied and real-world conditions. Furthermore,
computational constraints limit extensive hyperparameter
tuning and the exploration of alternative optimization
methods, which could enhance model performance and
robustness. Addressing these limitations in future work will
be essential to improve the reliability and clinical
applicability of prostate cancer diagnostic tools, especially
across diverse racial groups.

Conclusion

In this study, we propose a novel prostate cancer detection
framework that accounts for racial disparities and leverages
targeted biomarkers to enhance diagnostic accuracy. Unlike
traditional models that assume a one-size-fits-all approach,
our framework integrates race-specific gene expression
patterns, enabling the model to capture biological variations
across populations more effectively. Our findings reveal that
racial disparities in cancer detection are a significant factor,
with up to a 4% difference in diagnostic performance
between racial groups. This highlights the value of
developing more inclusive, population-aware approaches in
biomedical artificial intelligence to improve equity and
outcomes across diverse communities. While our results are

promising, we recognize the opportunity to further
strengthen the framework by expanding the dataset
particularly for underrepresented groups such as the Black
cohort. This will help ensure even greater robustness and
generalizability. Nonetheless, our study offers a strong
foundation and compelling evidence that personalized,
race-aware models can play a pivotal role in advancing
precision diagnostics and addressing healthcare disparities.
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