
Abstract 
Background/Aim: Prostate cancer (PCa) incidence varies significantly by race, with Black men experiencing nearly 1.8 
times higher prevalence than White men in the USA. Current prostate specific antigen (PSA)‑based diagnostics lack 
specificity, and many machine learning models fail to consider racial differences in gene expression. This study proposes 
a race‑aware PCa detection framework using optimized feature selection to improve diagnostic accuracy and fairness.  
Materials and Methods: RNAseq‑Count‑STAR and clinical phenotype data from TCGA (554 patients) were analyzed. A feature 
selection pipeline integrating Differential Gene Expression analysis, Receiving Operating Characteristic (ROC) analysis, and 
Gene‑Set Enrichment Analysis identified a 9‑gene subset strongly associated with the PCa clinical pathway. The model was 
trained on White population data and validated on the Black population dataset using various data balancing techniques. 
Results: The 9‑gene logistic regression model achieved 95% accuracy in the White population and 96.8% accuracy 
in the Black population. Fairness analysis indicated minimal disparity between groups (4% difference in demographic 
parity, p=0.518). These results highlight the predictive value of race‑specific biomarkers and demonstrate that 
biologically informed feature selection improves both accuracy and interpretability.  
Conclusion: This study introduces a race‑specific PCa detection framework that improves diagnostic accuracy using targeted 
biomarkers. It addresses misclassification risks in race‑agnostic models and emphasizes the need for race‑aware gene 
expression in ML diagnostics. Beyond detection, it enables personalized treatment, advancing precision medicine in PCa care. 
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Introduction 
 
Prostate cancer (PCa) is one of the most prevalent cancers 
in men, with approximately 1.6 million cases and 366,000 
deaths annually (1). It ranks second in male cancer 
incidence after lung cancer, contributing to 1,276,106 new 
cases and 358,989 deaths (3.8% of all cancer‑related male 
deaths) in 2018 (2). During its early‑stage PCa sometimes 
exhibits no symptoms, making prompt identification and 
therapy more difficult (2). PCa rates vary considerably 
according to race, ethnicity and geography, with black 
people in the US having a nearly 1.8‑fold higher PCa rate 
than white people (3, 4). Existing diagnostic methods such 
as prostate specific antigen (PSA) testing face problems of 
specificity, leading to a high incidence of false positives and 
false negatives (5). Screening for PSA is associated with 
over‑ diagnosis and unnecessary treatment complications 
(6). For example, the use of a 3.0 ng/ml PSA threshold 
results in a 2.6% false negative rate for all PCa and 0.5% 
for clinically specific PCa (7). Given these constraints, 
alternative approaches to improving the accuracy of 
detection are being explored, with machine learning (ML) 
emerging as a promising solution (8). ML algorithms can 
improve predictive modelling by detecting complex 
patterns in data and outperform traditional PSA testing in 
terms of accuracy (9, 10). The integration of ML into 
diagnostic frameworks aims to reduce false positives, 
improve screening effectiveness and enable early 
intervention (11). This shift from traditional to data‑
driven diagnostics represents a significant advancement 
in PCa detection, potentially improving survival rates and 
patient outcomes (12). The rise of genomic data further 
enhances PCa detection through gene expression profiling 
where variations in DNA sequences can reveal disease 
risks and inform treatment strategies (13). Leveraging 
genomic insights also enables precision medicine, offering 
personalized interventions beyond the capabilities of 
imaging or PSA testing. This approach not only enhances 
early detection but also optimizes treatment responses, 
improving patient quality of life and minimizing 
mistreatment (14,  15). 

Diagnostic models for PCa have been developed using 
a variety of methods, including advanced imaging, 
microarray analysis and clinical data collection ML 
techniques are increasingly used for their ability to 
analyze complex data sets and improve the accuracy of 
classification. Logistic regression, a widely used ML 
algorithm for binary classification, was used in several 
comparative PCa studies. In model (16) logistic 
regression reached an accuracy of 0.91, second only to 
multiple linear regression (0.96). The model (17) 
reported an area under the curve (AUC) score of 0.77, 
which was higher than the PSA score (0.67). Similarly, 
model (18) evaluated different ML techniques on clinical 
data and identified the multi‑layer perception (MLP) as 
the best performer with an accuracy of 0.97. The gene 
expression‑based models further improved the detection 
of PCa. Model (19) analyzed datasets containing genes, 
exon, exon cross‑linking and isoform data and applied 
dimensionality reduction techniques such as Principal 
Component Analysis (PCA) and Recursive Feature 
Elimination (RFE). The PCA used for the combined 
datasets resulted in the highest accuracy and precision. 
Model (20) used K‑Nearest‑Neighbors (KNN), Support 
Vector Machine (SVM), Linear Discriminant Analysis 
(LDA) and Decision Tree Classifier (DTC) models in 
combination with a selection of variables using a signal‑
to‑noise ratio (SNR) and a correlation coefficient. Their 
model achieved 100 percent accuracy in classifying the 
four selected genes and 85 percent accuracy in classifying 
PCa. Despite promising results, current models do not 
account for differences in gene expression between racial 
groups. The PCa biomarkers vary between populations 
due to genetic variation, which is a key consideration for 
diagnostic accuracy. For example, autopsy studies showed 
a higher incidence of high grade prostatic intraepithelial 
neoplasia in African American men compared to 
European American men (21). Despite progress in the 
detection of PCa through gene expression, no published 
study has adopted a race‑specific approach using gene 
expression data. While the model (19) and model (20) 
addressed high dimensionality and class imbalance, they 
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did not include racial differences or use a differential gene 
expression analysis (DGE) approach using the DESeq2 
tool to select the characteristics. The model (19) used 
SMOTE to balance the class, but did not consider race‑
related factors, which may limit clinical relevance. To 
bridge this gap, we propose a race‑specific ML model for 
PCa diagnosis, which integrates the optimization of the 
selection of features by means of DGE and enrichment 
analysis of the gene pool. In addition, balancing 
techniques such as SMOTE will be used to improve the 
performance of the model and to ensure more accurate 
and equitable diagnostic results in a variety of 
populations. For more details, please check Table I. 

This study proposes a robust logistic regression 
approach with optimized feature selection for PCa 
diagnosis with the goal of improving early detection and 
removing bias between race specific biomarkers, which 
further enhances its accuracy. This approach improves 
effectiveness and robustness by separating data by race, 
eradicating race bias and utilizing optimized feature 
selection through gene‑set enrichment analysis which 
later is being used for logistic regression modelling. The 
combination of race‑specific datasets, optimized feature 

selection and logistic regression modelling minimizes bias 
and offers a robust diagnostic method for PCa, thereby 
enhancing its ability for early detection. 
 
Materials and Methods 
 
The pipeline of our study is described in Figure 1. The 
methods consist of data collection, data preprocessing, 
feature selection, data up sampling, data splitting, 
hyperparameter tuning, training & testing. 

 
Data collection. This study retrieved data from the open‑
source TCGA database, hosted by the University of 
California, Santa Cruz, on August 25, 2024. Two key 
datasets were used in this research: the RNAseq STAR ‑ 
Counts dataset and the GDC TCGA Phenotypes dataset. 
The RNAseq dataset contains gene expression information 
obtained through sequencing. The count data has been 
pre‑normalized using the log2(count+1) method, 
providing greater depth into transcriptional activity across 
different genes. This normalization allows for the 
identification of genes associated with specific conditions, 
such as cancer. 

Table I. Summary of related studies and contributions of this work. 
 
Research                                    Their findings                                                                                           Our contribution 
 
Mohammed et al. (16)           Used logistic regression for binary classification in PCa            Proposed a race‑specific ML model for PCa diagnosis,  
                                                     diagnosis, achieving 0.91 accuracy, but did not explore             incorporating differential gene expression (DGE) and  
                                                     higher‑dimensional or race‑specific models.                                  enrichment analysis for optimized feature selection. 
Busetto et al. (17)                   Applied logistic regression with an AUC of 0.77,                           Improved classification accuracy by integrating gene 
                                                     outperforming PSA (0.67), but lacked genomic                            expression data with race‑specific consideration and  
                                                     data integration.                                                                                       advanced feature selection. 
Erdem et al. (18)                     Compared ML algorithms on clinical data, identifying                Employed ML with gene expression profiles and DGE  
                                                     MLP as the best performer with 0.97 accuracy, but did              to enhance diagnostic accuracy across racially  
                                                     not use gene expression or race‑specific approaches.                 diverse populations. 
Casey et al. (19)                       Analyzed gene, exon, and isoform data using PCA and               Applied DESeq2 for DGE‑based feature selection  
                                                     RFE for dimensionality reduction but did not include                and SMOTE for class balancing, addressing both  
                                                     racial variations or use DESeq2 for DGE.                                         high dimensionality and racial bias. 
Bouazza et al. (20)                  Used KNN, SVM, LDA, and DTC with SNR and correlation          Developed a comprehensive race‑aware pipeline 
                                                     coefficients to select variables, achieving high accuracy,            using DESeq2, gene enrichment analysis, and  
                                                     but without race‑specific analysis or DGE methods.                    SMOTE to ensure equitable and accurate PCa  
                                                                                                                                                                            diagnosis across populations. 
 
PCa: Prostate cancer; ML: machine learning; DGE: differential gene expression; AUC: area under curve; PSA: prostate specific antigen; MLP: multi‑
layer perceptron; PCA: principal component analysis; RFE: recursive feature elimination; KNN: K‑Nearest‑Neighbors; SVM: support vector machine; 
LDA: linear discriminant analysis; DTC: decision tree classifiers. 



Preprocessing of gene expression data. First, both data need 
to be preprocessed separately first due to the different 
formats of data structure. For RNASeq STAR‑Count we had 
to proceed with the data cleaning and imputation of 
missing values, and for the Phenotypes data we had to 
check thoroughly whether the feature is reliable and 
usable for the data merging later. After the data cleaning 
process, we matched the RNASeq STAR‑Count data with 
phenotype data by matching its Ensembl_ID to filter the 
RNASeq STAR‑Count to have the race specific dataset; for 
instance, we separated the data into White, Black, Native 
American, and Asian. We processed our data using Python 
version 3.12.7. 

 
Feature selection. Features for model construction were 
selected using DGEs and Receiver Operating Characteristic 

(ROC) analysis to identify the most significant genes (22). 
DGE analysis was performed using PyDESeq2 version 
0.4.10. The generated DGE list was filtered with cutoff 
thresholds of baseMean ≥10 and p‑value <0.05 to exclude 
outlier genes, and those with baseMean <10 were 
excluded from further analysis. Genes were classified as 
up‑regulated or down‑regulated based on positive or 
negative log2 Fold Change, respectively (23). The filtered 
DGEs were then passed to ROC analysis to identify the 
most significant genes. A higher ROC value indicates a 
greater likelihood of true positive predictions, and genes 
with an area under the curve (AUC) >0.9 were selected, as 
previous studies suggest that genes with AUC values above 
this threshold are the most predictive for modeling (24). 
The selected genes were further refined through Gene‑Set 
Enrichment Analysis (GSEA), with filtering against the 
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Figure 1. Overview of the research pipeline utilized in this study.



Kyoto Encyclopedia of Genes and Genomes (KEGG) and 
GSEA databases to ensure their relevance to clinical PCa 
pathways (25). 

The gene list, initially formatted using Ensembl IDs, 
was converted to gene symbols using the SynGO online 
converter (26) After conversion, the gene list was checked 
against PCa clinical pathways in the GSEA‑MSigDB 
database (27). Genes identified in these clinical pathways 
were selected for final model construction. This approach, 
integrating DGE filtering, ROC analysis, and pathway 
enrichment, ensures that the genes selected are both 
biologically relevant and predictive, providing a robust 
foundation for model development. 

 
Data balancing & splitting. After completing the feature 
selection process, the dataset was found to have a 
significant class imbalance, with a cancer‑to‑normal 
sample ratio of approximately 9:1. To effectively address 
this imbalance, we first performed stratified train‑test 
splits at ratios of 60/40, 70/30, and 80/20. Stratification 
ensured that the class distribution was preserved in both 
training and testing sets, while the test set was kept 
unchanged to provide a realistic and unbiased evaluation 
of model performance. Various resampling techniques 

were then applied exclusively to the training data to 
rebalance it. These methods included Random Over 
Sampling (ROS), Random Under Sampling (RUS), 
Synthetic Minority Over‑sampling Technique (SMOTE), 
Borderline SMOTE, TOMEK Links, Adaptive Synthetic 
Sampling (ADASYN), KMeansSMOTE, and Support Vector 
Machine SMOTE (SVMSMOTE). The goal was to adjust the 
class distribution in the training set so that cancer samples 
constituted approximately 66.66% and normal samples 
33.33% of the data, corresponding to a sampling strategy 
of 0.3. This careful rebalancing aimed to improve the 
classifier’s ability to learn patterns from the minority 
cancer class while preserving the integrity of the test data 
for valid model assessment (Table II). 

 
Model construction. The baseline model used in this study 
is logistic regression, selected for its straightforward 
approach and interpretability qualities that are 
particularly valuable when analyzing gene expression data 
for prostate cancer detection. To benchmark the 
performance of this baseline model, we compared it with 
three widely used classifiers: Random Forest (RF), 
Support Vector Classifier (SVC), and K‑Nearest Neighbors 
(KNN). These comparison models were implemented to 
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Table II. Feature selection, data balancing and splitting scenario for this research. 
 
Feature selection                                                   Train‑test splitting                                                            Balancing techniques 
 
DGE (basemean ≥10 & padj <0.05)                              80/20                           No Balancing, RandomUnderSampler, SMOTE, RandomOversampler,  
                                                                                                70/30                        TOMEKLinks, BorderlineSMOTE, ADASYN, SVMSMOTE, KMeansSMOTE 
                                                                                                60/40 
 
DGE (basemean ≥10 & padj <0.05 &                           80/20                           No Balancing, RandomUnderSampler, SMOTE, RandomOversampler,  
log2FoldChange >0.35)                                                   70/30                        TOMEKLinks, BorderlineSMOTE, ADASYN, SVMSMOTE, KMeansSMOTE 
                                                                                                60/40                                                                                              
 
DGE (basemean ≥10 & padj <0.05 &                           80/20                           No Balancing, RandomUnderSampler, SMOTE, RandomOversampler,  
log2FoldChange >0.4)                                                      70/30                        TOMEKLinks, BorderlineSMOTE, ADASYN, SVMSMOTE, KMeansSMOTE 
                                                                                                60/40                                                                                              
 
DGE (basemean ≥10 & padj <0.05) +                          80/20                           No Balancing, RandomUnderSampler, SMOTE, RandomOversampler,  
ROC Analysis + Genes Validation                                  70/30                        TOMEKLinks, BorderlineSMOTE, ADASYN, SVMSMOTE, KMeansSMOTE 
                                                                                                60/40                                                                                              
 
DGE: Differential gene expression; padj: p‑adjusted value; ROC: receiver operating characteristic; SMOTE: synthetic minority over‑sampling 
technique; ADASYN: adaptive synthetic sampling; SVMSMOTE: support vector machine SMOTE.



evaluate how well logistic regression performs under 
optimal conditions. Specifically, after identifying the top‑
performing configuration for logistic regression, we 
applied the same optimal settings to the other classifiers 
to ensure a fair performance benchmark. All models were 
trained and tested using identical preprocessing steps, 
including normalization and feature selection, to maintain 
consistency in evaluation. 

To ensure the reliability of the trained models, 
particularly in terms of statistical robustness, the training 
was performed using data from the White race cohort, 
which represented the largest population group in the 
dataset. This choice provides a more stable training 
foundation, reduces the risk of overfitting due to limited 
sample sizes, and enhances the generalizability of the 
findings within the context of the available data. 

Additionally, for each given model, Hyperparameter 
Tuning is applied for improving the model’s performance. 
More details on hyperparameter grid are shown on Table III. 

 
Model evaluation. In this study, we evaluate model 
performance using a comprehensive classification report 
that includes Precision, Recall (Sensitivity), Accuracy, and 
F1‑score, supported by a confusion matrix for detailed 
error analysis. Precision measures the proportion of 
correct positive predictions, while Recall assesses the 
model’s ability to detect all relevant positive instances. 
Accuracy reflects the overall correctness of predictions 
across all classes, and the F1‑score provides a balanced 
harmonic mean of Precision and Recall, accounting for 
both false positives and false negatives. These metrics 
collectively help identify issues such as underfitting or 
overfitting by ensuring no single aspect of performance is 
overlooked. The confusion matrix further visualizes true 
positives, true negatives, false positives, and false 
negatives, offering an intuitive view of classification 
outcomes. Additionally, we assess the area under the 
receiver operating characteristic curve (AUC‑ROC), which 
quantifies the model’s ability to distinguish between 
classes across various threshold settings, with higher 
values indicating better discriminatory power. 

To ensure ethical and equitable model deployment, 
fairness metrics were also incorporated to evaluate 
whether the model performs consistently across different 
subgroups or demographics, helping to detect potential 
biases. Specifically, we assessed Demographic Parity, 
which evaluates whether positive prediction rates are 
equally distributed across demographic groups, and Equal 
Opportunity, which examines whether true positive rates 
are consistent across those groups. These fairness 
assessments enable a more responsible evaluation of 
model outcomes and highlight any disparities that may 
require mitigation. All performance evaluations were 
conducted using scikit‑learn version 1.5.1. From all tested 
scenarios, the top five models exhibiting the best overall 
performance were selected for further benchmarking. 
These selected models were then evaluated using different 
dataset cohorts and a variety of classifier algorithms to 
validate their robustness and generalizability across 
diverse conditions. 
 
Results and Discussion 
 
Biomarker selection for PCa classification. The feature 
selection process across the four scenarios resulted in 
subsets of 4, 9, 19, and 139 as shown in Table IV. These 
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Table III. Hyperparameter grid for Logistic Regression (LR), Random 
Forest (RF), Support Vector Classifier (SVC), and K‐Nearest Neighbors 
(KNN) classifiers. 
 
Classifier                  Hyperparameters                          Values/Options 
 
LR                                              C                                               [0.1, 1, 10] 
                                              solver                             ['liblinear', 'saga', 'lbfgs'] 
                                             penalty                                              ['l2'] 
                                            max_iter                                           [1000] 
RF                                   n_estimators                                    [100, 200] 
                                          max_depth                                  [None, 10, 20] 
                                   min_samples_split                                    [2, 5] 
                                   min_samples_leaf                                    [1, 2] 
SVC                                            C                                               [0.1, 1, 10] 
                                              kernel                                       ['linear', 'rbf '] 
                                             gamma                                     ['scale', 'auto'] 
KNN                                n_neighbors                                       [3, 5, 7] 
                                             weights                              ['uniform', 'distance'] 
                                              metric                            ['euclidean', 'manhattan']



gene subsets identified as the most significant genes for 
PCa classification. These selected genes were determined 
based on their relevance to distinguishing between 
cancerous and non‑cancerous samples. 

Specifically for the first scenario, we initially obtained 
a list of 13 filtered genes by using a combination of DGE 
analysis, ROC analysis, the results of this analysis can be 
seen in Table V. This gene was then converted to a gene 
symbol for Gene‑Set Enrichment Analysis. 

Using the converted gene symbols, a GSEA was 
performed against the MSigDB database. As shown in Figure 
2, the most significant overlap occurred with the 
LIU_PROSTATE_CANCER_DN gene set (9 overlapping genes 
out of 493; p=2.39×10–15, FDRq=2.05×10–11), which contains 
genes down‑regulated in PCa samples. This strongly supports 
the biological relevance of the selected biomarkers to PCa. 
Importantly, this overlap confirms that the top‑ranked genes 
in our study are not only statistically significant but are also 
part of a known PCa expression signature, reinforcing their 
validity as potential diagnostic targets. 

Additionally, the gene list showed enrichment in other 
cancer‑related pathways, including DELYS_THYROID_ 
CANCER_DN and SENESE_HDAC1 _AND_ HDAC2_TARGETS_ 
DN, both with FDRq <0.001. These pathways are associated 
with thyroid carcinoma and epigenetic regulation in 
osteosarcoma, respectively. Such overlaps suggest that the 
selected genes may be involved in broader cancer‑related 
regulatory mechanisms, including cellular differentiation, 
chromatin remodeling, and transcriptional repression. The 
presence of significant overlaps with multiple cancer 
modules (e.g., MODULE_11, MODULE_100) and brain tumor 
gene sets (e.g., JOHANSSON_BRAIN_CANCER_EARLY_ 

VS_LATE) further emphasizes the potential role of these 
genes in generalized tumor biology. 

Overall, this analysis not only validates the biological 
importance of the final 9‑gene panel but also highlights 
their involvement in core oncogenic processes across 
multiple cancer types. These results strengthen the 
justification for using these biomarkers in a PCa diagnostic 
context and support their investigation for broader 
translational relevance. 

Apart from GSEA, we also conducted a statistical 
analysis using Random Forest, which yielded results 
consistent with those of GSEA. Among 13 genes, 9 genes 
were found statistically significant as shown in Figure 3. 

The final subset of nine genes GJA1, FRMD6, FAM107A, 
HSPB8, GSTP1, MYLK, GSTM3, CRYAB, and FGFR2 not only 
demonstrated statistical significance (adjusted p‑value 
<0.05, AUC >0.9), but also show strong biological relevance 
to prostate cancer pathology. GJA1 (Connexin 43) has been 
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Table IV. Gene subsets identified through feature selection methods. 
 
Feature selection scenario                                                                                                                                                     Identified genes 
 
DGE with basemean ≥10 & padj <0.05 + ROC analysis + MsigDB validation                                                                         9 
DGE with basemean ≥10 & padj <0.05 & abs(log2FoldChange) >0.4                                                                                 139 
DGE with basemean ≥10 & padj <0.05 & abs(log2FoldChange) >0.35                                                                                 19 
DGE with basemean ≥10 & padj <0.05 & abs(log2FoldChange) >0.4                                                                                      4 
 
DGE: Differential gene expression; padj: p‑adjusted value; ROC: receiver operating characteristic; MsigDB: molecular signature database; abs: 
absolute.

Table V. Conversion of Ensembl IDs to gene symbols for selected genes. 
 
Gene symbol (ENS)                                            Converted gene symbol 
 
ENSG00000244509.3                                                   APOBEC3C 
ENSG00000170271.9                                                          CLU 
ENSG00000084207.14                                                     CRYAB 
ENSG00000152137.5                                                     FAM107A 
ENSG00000168077.12                                                    FAXDC2 
ENSG00000066468.19                                                     FGFR2 
ENSG00000139926.14                                                    FRMD6 
ENSG00000109846.6                                                         GJA1 
ENSG00000134202.9                                                       GSTM3 
ENSG00000065534.17                                                     GSTP1 
ENSG00000152661.7                                                       HSPB8 
ENSG00000120885.18                                                      MYLK 
ENSG00000168309.15                                                    SCARA3



implicated in tumor suppression and altered expression 
across multiple cancers, including PCa, due to its role in gap 
junction communication (29). FRMD6, a regulator of cell 
polarity, is linked to growth control and favorable 
outcomes in certain cancers (30). FAM107A has emerged 
as a tumor suppressor in PCa and is frequently down‑
regulated in aggressive cases (31). HSPB8, a small heat 
shock protein, facilitates cancer progression via the 

JAK/STAT3 pathway and is known to be up‑regulated in 
PCa (32). GSTP1, perhaps one of the most established PCa 
biomarkers, shows differential methylation and expression 
patterns between racial groups and plays a crucial role in 
detoxification (33). MYLK has been identified as a 
predictive marker for PCa recurrence (34), while GSTM3, 
another detoxification enzyme, has shown polymorphisms 
associated with prostate cancer risk (35). CRYAB, known 
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Figure 2. Gene Set Enrichment Analysis (GSEA) using the MSigDB database revealed a significant enrichment of overlapping genes associated with cancer‐
related clinical pathways, underscoring the biological relevance of the identified gene signatures in the context of tumor progression and diagnosis.



for its anti‑apoptotic functions, and FGFR2, a regulator of 
cell proliferation and angiogenesis, are both involved in 
tumorigenic processes and were found to be significantly 
altered in prostate malignancies (36, 37). For more details 
on the overlapped genes, please check Table VI. 

Collectively, these genes reflect diverse biological 
processes including apoptosis regulation, stress response, 
detoxification, and growth signaling, aligning well with 
known mechanisms of prostate cancer progression. Their 
identification through integrated DGE, ROC, and GSEA 
methods further supports their utility not only in 
classification tasks but also as potential candidates for 
biomarker‑driven therapeutic interventions. 

While our final model included 9 key genes with strong 
diagnostic performance and enrichment in prostate 

cancer pathways, several additional genes identified in 
earlier filtering stages also warrant biological 
consideration. For instance, Clusterin (CLU) has been 
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Figure 3. Top nine genes that are the most important based on statistical analysis.

Table VI. Genes overlapping between enrichment and statistical analyses. 
 
Overlapped genes from statistical analysis and enrichment analysis 
 
ENSG00000109846.6                                                    GJA1 
ENSG00000139926.14                                               FRMD6 
ENSG00000152137.5                                                FAM107A 
ENSG00000152661.7                                                  HSPB8 
ENSG00000065534.17                                                GSTP1 
ENSG00000120885.18                                                 MYLK 
ENSG00000134202.9                                                  GSTM3 
ENSG00000084207.14                                                CRYAB 
ENSG00000066468.19                                                FGFR2



implicated in apoptotic regulation and treatment 
resistance across several cancers, including prostate 
tumors. APOBEC3C, part of the APOBEC family of cytidine 
deaminases, has been associated with somatic mutation 
processes and may influence tumor heterogeneity. 
Similarly, SCARA3, although not retained in the final 
model, plays a role in oxidative stress response and has 
been shown to modulate tumor cell survival in other 
malignancies. Although these genes did not meet the final 
inclusion criteria based on ROC or enrichment thresholds, 
their presence in early‑stage filters suggests potential 
relevance, and further biological validation could uncover 
additional roles in PCa progression or resistance 
mechanisms. 

 
Performance on white population. Using the model 
construction scenario, there is a significant result in our 
PCa diagnostic models. The top 5 models are presented in 
Table VII. 

The performance of the model on the White population 
indicates that the best‑performing model, trained using nine 
genes, achieved an accuracy of 95% and an AUC of 0.96. The 

high accuracy suggests that the model is highly effective at 
correctly classifying individuals as either having prostate 
cancer or not. Meanwhile, the AUC of 0.96 reflects the 
model’s excellent ability to distinguish between cancer and 
normal samples across all possible classification thresholds 
indicating strong discriminative power, even when the 
decision boundary shifts. These genes significantly overlap 
with the PCa clinical pathways, as demonstrated by GSEA, 
supporting their biological relevance. This finding suggests 
that these genes play a crucial role in PCa progression and 
may serve as key biomarkers for accurate classification. The 
improved model performance underscores the importance 
of biologically informed feature selection, where training on 
disease‑specific biomarkers enhances predictive accuracy. 
Furthermore, this result reinforces the potential of precision 
medicine approaches, demonstrating that selecting the most 
relevant molecular features could lead to more effective and 
tailored diagnostic models for specific populations. 

 
Performance on Black population. Further evaluation of the 
Black population identified the top five best‑performing 
models, as presented in Table VIII. 
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Table VII. Top five logistic regression models in the White population. 
 
No             Scenario                      Balancing technique         Data splitting       Accuracy (%)       F1‑Score (%)      Precision (%)       Recall (%)         AUC 
 
1        DGE+ROC+GSEA                       SVMSmote                         60/40                      95                             97.1                        96.7                      97.5              0.96 
2        DGE+ROC+GSEA             Random Oversampler               70/30                      95                             97.5                        97.5                      97.5              0.95 
3        DGE+ROC+GSEA             Random Oversampler               80/20                      94.5                          95.2                        97.5                      97                 0.92 
4        DGE+ROC+GSEA                           SMOTE                             80/20                      94.5                          96                            95                         97.5              0.92 
5        DGE+ROC+GSEA                BorderlineSMOTE                  80/20                      94                             97                            95.2                      98.7              0.92 
 
DGE: Differential gene expression; padj: p‑adjusted value; ROC: receiver operating characteristic; GSEA: gene set enrichment analysis. 
  
 
Table VIII. Top five logistic regression models in the Black population. 
 
No             Scenario                      Balancing technique         Data splitting       Accuracy (%)       F1‑Score (%)      Precision (%)       Recall (%)         AUC 
 
1        DGE+ROC+GSEA            RandomUnderSampler              80/20                      96.8                          96.4                        98.2                      98.7              0.99 
2        DGE+ROC+GSEA                             None                               80/20                      96.8                          98.2                        98.2                      97.5              0.98 
3        DGE+ROC+GSEA                           SMOTE                             80/20                      96.8                          96.4                        98.2                      97.5              0.99 
4        DGE+ROC+GSEA                      TomekLinks                        80/20                      95.3                          94.7                        97.2                      98.7              0.99 
5        DGE+ROC+GSEA            RandomUnderSampler              60/40                      92.1                          95                            92                         98                 0.97 
 
DGE: Differential gene expression; padj: p‑adjusted value; ROC: receiver operating characteristic; GSEA: gene set enrichment analysis; AUC: area 
under curve.



When testing the model on the Black population 
dataset, a similar performance trend was observed, with 
the best‑performing model again derived from the 9‑gene 
subset, achieving an impressive accuracy of 96.8%. 
Notably, this accuracy surpasses that observed in the 
White population. This discrepancy may be attributed to 
the smaller sample size of the Black cohort, which can lead 
to overrepresentation and potentially inflate performance 
metrics. Nevertheless, these findings reinforce the earlier 
results, confirming that this specific set of biomarkers 
plays a pivotal role in enhancing model accuracy for 
prostate cancer detection. The consistent performance 
across racial groups underscores the strong predictive 
power of these nine genes, positioning them as robust and 
generalizable biomarkers for prostate cancer 
classification. Furthermore, this outcome highlights the 
critical importance of targeted feature selection, 
demonstrating that training with biologically relevant 
genes not only improves predictive performance but also 
reduces dimensionality resulting in a more efficient and 
interpretable model. The model’s best AUC score reached 
an outstanding 0.99, which is further evidence of its strong 
discriminative capability. 

 
Performance comparison with alternative classifiers. After 
identifying the top‑performing model scenarios for both 
populations, we benchmarked these scenarios against 
alternative classifiers. For the White population, we used 
SVMSMOTE with nine selected genes and a 60/40 train‑
test split. For the Black population, we employed 
RandomUnderSampler with an 80/20 split as the baseline 
for comparison. The result can be seen in Table IX. 

After comparing three different classifiers with our 
baseline model (logistic regression), the results show that 
logistic regression still outperforms the others as shown 
in Table X. Although SVC achieved a similar accuracy, 
logistic regression yielded a slightly higher AUC score, 
outperforming SVC. A similar result was observed in the 
Black population, where logistic regression also 
outperformed the other classifiers, further reinforcing the 
robustness of our baseline model.  

Demographic parity assessment. We evaluated the 
fairness of our top prostate cancer detection model across 
racial groups using Demographic Parity. The model achieved 
high detection rates for both White (90%) and Black (86%) 
cohorts, with a 4% difference, as shown in Figure 4. A chi‑
square test of independence produced a p‑value of 0.518, 
indicating this difference is not statistically significant 
(p>0.05) and likely due to random variation rather than 
algorithmic bias. Although statistically non‑significant, the 
4% disparity warrants clinical consideration given known 
prostate cancer outcome differences across races. The 
model’s conservative detection threshold helps minimize 
false negatives, which are critical in screening settings, and 
ensures comparable treatment across demographics. 

From a fair perspective, the model satisfies 
Demographic Parity, providing equitable positive 
prediction rates for White and Black patients when clinical 
indicators warrant. Observed differences are more likely 
driven by genuine clinical, genetic, or sociodemographic 
factors rather than discrimination, supporting the model’s 
responsible clinical use. 
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Table IX. Classifier performance comparison in the White population. 
 
No     Classifier     Accuracy      F1‑Score      Precision       Recall       AUC 
                                      (%)                (%)                 (%)              (%) 
 
1              LR                95.6               97.1                96.7             97.5         0.96 
2             SVC               95.6               97.2                97.5             96.9         0.95 
3              RF                94.5               96.9                96.4             97.5         0.91 
4            KNN              94.5               96.9                96.4             97.5         0.93 
 
LR: Logistic regression; SVC: support vector classifier; RF: random 
forest; KNN: K‑Nearest‑Neighbors; AUC: area under curve. 
 
  
Table X. Classifier performance comparison in the Black population. 
 
No     Classifier     Accuracy      F1‑Score      Precision       Recall        AUC 
                                      (%)                (%)                 (%)              (%) 
 
1              LR                96.8               98.4                98.2             98..7         0.99 
2             SVC               93.7               96.4                98.1             94.7         0.98 
3              RF                95.3               96.9                96.4             97.5         0.99 
4            KNN              94.5               96.5                94.8             98.2         0.98 
 
LR: Logistic regression; SVC: support vector classifier; RF: random 
forest; KNN: K‑Nearest‑Neighbors; AUC: area under curve.



Equal opportunity assessment. Furthermore, we evaluated 
Equal Opportunity to assess fairness with respect to true 
positive rates (TPR) across racial groups. The TPR was 
97% for the White cohort and 95% for the Black cohort, 
yielding a difference of 2%. This indicates that the model's 
ability to correctly identify cancer cases is relatively 
balanced across groups. Even though statistically the 
model is slightly more effective in detecting cancer cases 
in white cohort, the gap is small (2%), which is generally 
acceptable (Figure 5). 

 
Comparison with existing models. To demonstrate the 
effectiveness of our approach, we conducted a 
comparative analysis with relevant existing research, as 

presented in Table XI. While most prior studies rely on 
imaging data, those utilizing gene expression typically 
involve larger gene sets, ranging from 20 to 29 genes. In 
contrast, our proposed model achieves comparable or 
even superior diagnostic accuracy using only nine genes, 
emphasizing its efficiency and suitability for clinical 
application. Moreover, our framework uniquely accounts 
for racial disparities and incorporates fairness metrics, 
ensuring both high performance and equitable outcomes 
across diverse populations. Our research further 
strengthens its impact through rigorous biomarker 
selection and the integration of race‑aware modeling, 
which together enhance both the diagnostic precision and 
the fairness of the model in real‑world clinical settings. 
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Figure 5. Equal opportunity assessment results, showing that the true 
positive rate (TPR) on white cohort is higher than black cohort by 2%.

Figure 4. Demographic parity result across different population datasets. 

Table XI. Comparative analysis with existing prostate cancer diagnostic models. 
 
Source                                                                    Method                                 Number of features       Data balancing                                Best result 
 
Mohammed et al. (16)                            Logistic regression                           Not using gene                        X                                               Acc: 0.91 
Busetto et al. (17)                      Multiple machine learning model             Not using gene                         X                               Achieved: 0.77 AUC Score 
Erdem and Bozkurt (18)                   Multi‑layer perceptron                       Not using gene                         X                                               Acc: 0.97 
Casey et al. (19)                                                      RFE                                                     20                                    √                                               Acc: 0.96 
Bouazza et al. (20)                                                KNN                                                    29                                    X                                               Acc: 0.85 
Proposed model                               Logistic regression – DGE ‑                                9                                      √                       Acc: 0.95 in White population and 
                                                                            Race specific                                                                                                               Acc: 0.96 in Black population with  
                                                                                                                                                                                                                           both AUC higher than 0.95 
 
DGE: Differential gene expression; RFE: recursive feature elimination; KNN: K‑Nearest Neighbors; AUC: area under curve; Acc: accuracy.



Limitations & future works. While this study demonstrates 
promising results in prostate cancer (PCa) diagnosis, several 
limitations must be acknowledged. Despite employing a 
thorough feature selection method, the dataset suffers from 
significant class imbalance, with 414 cancer samples 
compared to only 44 normal samples, a roughly 9:1 ratio. 
This heavy imbalance may adversely affect the model’s 
accuracy, particularly for the underrepresented normal class. 
Additionally, the cross‑validation performed on the Black 
population subset is limited by a small sample size of only 
64 individuals, which may lead to overly optimistic results 
due to easier data separability and reduced generalizability. 
Another limitation is the reliance on secondary data from 
the TCGA repository, which restricts the scope and diversity 
of experiments. The diagnostic model could be substantially 
improved by incorporating primary gene expression data 
collected directly from clinical hospital sources, reflecting 
more varied and real‑world conditions. Furthermore, 
computational constraints limit extensive hyperparameter 
tuning and the exploration of alternative optimization 
methods, which could enhance model performance and 
robustness. Addressing these limitations in future work will 
be essential to improve the reliability and clinical 
applicability of prostate cancer diagnostic tools, especially 
across diverse racial groups. 
 
Conclusion 

 
In this study, we propose a novel prostate cancer detection 
framework that accounts for racial disparities and leverages 
targeted biomarkers to enhance diagnostic accuracy. Unlike 
traditional models that assume a one‑size‑fits‑all approach, 
our framework integrates race‑specific gene expression 
patterns, enabling the model to capture biological variations 
across populations more effectively. Our findings reveal that 
racial disparities in cancer detection are a significant factor, 
with up to a 4% difference in diagnostic performance 
between racial groups. This highlights the value of 
developing more inclusive, population‑aware approaches in 
biomedical artificial intelligence to improve equity and 
outcomes across diverse communities. While our results are 

promising, we recognize the opportunity to further 
strengthen the framework by expanding the dataset 
particularly for underrepresented groups such as the Black 
cohort. This will help ensure even greater robustness and 
generalizability. Nonetheless, our study offers a strong 
foundation and compelling evidence that personalized, 
race‑aware models can play a pivotal role in advancing 
precision diagnostics and addressing healthcare disparities. 
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