
Abstract 
Background/Aim: The role of catenin β interacting protein 1 (CTNNBIP1), a negative regulator of the canonical Wnt/β‑
catenin signaling pathway, in luminal A and B breast cancer stem cells treated with hormone therapy is unknown. 
This study investigated the relationship between CTNNBIP1 and aldehyde dehydrogenase 1 family member A3 
(ALDH1A3) expression and its impact on disease‑specific survival in luminal A and B breast cancer. Given that high 
protein kinase ζ (PKCζ) expression, together with elevated CTNNBIP1 or ALDH1A3, is linked to poor prognosis in 
luminal B tumors, we also examined their combined influence.  
Materials and Methods: Gene expression and clinical data from the Molecular Taxonomy of Breast Cancer International 
Consortium (METABRIC; n=2,509) were analyzed using Kaplan‑Meier and Cox proportional hazards models. Findings 
were validated with The Cancer Genome Atlas Pan‑Cancer Atlas (TCGA; n=1,084).  
Results: CTNNBIP1highALDH1A3high indicated a poor prognosis in patients with luminal B breast cancer treated with 
hormone therapy in the METABRIC dataset and aromatase inhibitors as hormone therapy in the TCGA data set, 
suggesting that high CTNNBIP1 and ALDH1A3 expression contributed to decreased effectiveness of hormone therapy 
in patients with luminal B breast cancer. PKCζhighCTNNBIP1highALDH1A3high was associated with a poor prognosis in 
patients with luminal B breast cancer treated with hormone therapy and aromatase inhibitors, suggesting that high 
PKCζ, CTNNBIP1 and ALDH1A3 expression contributed to decreased effectiveness of hormone therapy in patients 
with luminal B breast cancer.  
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Conclusion: PKCζ and CTNNBIP1 may be involved in the progression of ALDH1A3‑positive luminal B breast cancer. 
In luminal B breast cancer, PKCζ, CTNNBIP1 and ALDH1A3 could serve as molecular drug targets and prognostic 
biomarkers to predict the effectiveness of hormone therapy. 
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Introduction 
 
Breast cancer has the highest incidence rate and is the 
leading cause of cancer‑ related death among women 
worldwide (1). Breast cancer is classified into subtypes 
such as luminal A, luminal B, HER2 and triple‑negative 
breast cancer based on immunohistochemical 
classification and as normal‑like, luminal A, luminal B, 
HER2‑enriched, claudin‑low and basal‑like based on gene 
expression patterns of the PAM50 signature (2‑8). Among 
these subtypes, the luminal A and B subtypes are estrogen 
receptor (ER)‑positive and account for 70‑80% of breast 
cancer cases (9). Numerous luminal B types highly express 
HER2 and Ki67 (10, 11). The current standard drug care 
for luminal A and B breast cancer is hormone therapy, 
while luminal B type breast cancer is also treated with 
HER2‑targeted drugs and chemotherapy drugs. Patients 
with the luminal B subtype have a poorer prognosis than 
those with the luminal A subtype (10‑16). Therefore, it is 
necessary to identify target molecules for novel 
therapeutic drugs and biomarkers to predict the efficacy 
of drug treatment in luminal B breast cancer. 

Cancer stem cells (CSCs) have stem cell properties, 
including self‑renewal, multipotency and tumorigenicity 
(17, 18). CSCs are also resistant to drug therapy and 
radiotherapy. Thus, the development of molecular targeted 
therapies against CSCs is necessary to improve clinical 
outcomes of patients with cancer (17‑20). Aldehyde 
dehydrogenase 1 family member A3 (ALDH1A3) is a 
member of the ALDH1A family, an enzyme converting 
aldehydes into carboxylic acids, and is a CSC marker in 
several cancer types (21‑23). ALDH1A3 contributes to 
ALDH1 activity in breast cancer (24, 25). ALDH1A3 
expression is associated with tumor grade, metastasis and 

poor clinical outcomes in breast cancer (24, 26, 27). The 
canonical Wnt/β‑catenin signaling pathway is involved in 
CSC stemness characteristics such as cell proliferation, 
metastasis and metabolism (28). Several Wnt/β‑catenin 
signaling pathway‑related genes are associated with 
resistance to hormone therapy in ER‑positive breast cancer 
(29). Wnt3a also induces the expression of ALDH1A1, 
another isotype of ALDH1A3 and CSC marker, in MCF7 
breast cancer cells (30). However, the association between 
ALDH1A3 and Wnt/β‑catenin signaling is unclear. Catenin 
β interacting protein 1 (CTNNBIP1) has an inhibitory effect 
on the Wnt/β‑catenin signaling pathway via inhibitory 
interactions with β‑catenin and T‑cell transcription factor 
family members, and CTNNBIP1 mutations are detected in 
breast cancer (31, 32). Furthermore, in the luminal B 
subtype, high CTNNBIP1 expression is associated with low 
efficacy of hormone therapy (33). However, the relationship 
between CTNNBIP1 and ALDH1A3 expression and the 
efficacy of hormone therapy in luminal B breast cancer 
remains to be determined. 

Atypical protein kinase C (aPKC) is a PKC subfamily and 
is insensitive to Ca2+ and diacyl glycerol (34‑36). aPKC is 
composed of two isoforms, PKCζ and PKCλ/℩ (34‑36), and 
activated by lipids such as phosphatidylinositol (3,4,5)‑
trisphosphate and ceramide (37‑40), and by the 
Par‑6‑Cdc42/Rac1 complex via PB1‑PB1 domain interaction 
(35, 41, 42). PKCζ is involved in several biological properties 
such as cell polarity (35) and cell survival (43‑45), and is also 
involved in cancer cell proliferation and invasion (46‑48). 
Experimental studies using animal models and cell lines 
have reported that PKCζ contributes to endocrine therapy 
resistance, particularly to tamoxifen, as well as to 
chemoresistance to taxane, cisplatin and doxorubicin, and 
radioresistance in cancer cell lines (49‑53). Furthermore, in 
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patients with the luminal B subtype treated with hormone 
therapy, especially aromatase inhibitors, high PKCζ 
expression or high PKCζ and CTNNBIP1 expression is 
associated with a poor clinical outcome (33). In addition, in 
patients with luminal B breast cancer treated with hormone 
therapy, especially aromatase inhibitors, high PKCζ and 
ALDH1A3 expression is also associated with a poor clinical 
outcome (54). However, the relationship between PKCζ, 
CTNNBIP1 and ALDH1A3 expression and the efficacy of 
hormone therapy in the luminal B subtype remains to be 
determined. 

The present study examined the effectiveness of hormone 
therapy based on PKCζ, CTNNBIP1 and ALDH1A3 expression 
in the luminal B subtype. The results demonstrated that 
patients with PKCζhighCTNNBIP1highALDH1A3high luminal B 
breast cancer treated with hormone therapy, especially 
aromatase inhibitors, had a poor prognosis. The results 
suggested that high expression levels of PKCζ, CTNNBIP1 and 
ALDH1A3 contributed to decreased effectiveness of hormone 
therapy in luminal B breast cancer. 
 
Materials and Methods 
 
Datasets. The Molecular Taxonomy of Breast Cancer 
International Consortium (METABRIC) dataset (n=2,509) 
(55, 56) and The Cancer Genome Atlas (TCGA) dataset 
(n=1,084) (57) were downloaded from cBioPortal (58, 59) 
on August 13, 2024. The details of the data have been 
reported previously (33, 54). 
 
Statistical analysis of cancer genomics data. Statistical 
analysis of the disease‑specific survival (DSS) using the 
Kaplan‑Meier method and multivariate Cox regression 
analysis, using age at diagnosis, chemotherapy, and 
radiotherapy as a confounding factor, was performed as 
previously described (33, 54). Briefly, patients were divided 
into high and low PKCζ, CTNNBIP1 and ALDH1A3 
expression groups, receiver operating characteristic curves 
were plotted using the DSS data, and the Youden index was 
utilized as the optimal cut‑off. Two‑sided p<0.05 was 
considered to indicate a statistically significant difference. 

Three dimensional scatterplots were generated, and 
Kaplan‑Meier analyses for patients with high and low PKCζ, 
CTNNBIP1 and ALDH1A3 expression were performed using 
R software version 4.4.1 (R Core Team, R Foundation for 
Statistical Computing, Vienna, Austria). 
 
Results 
 
Patients with CTNNBIP1highALDH1A3high luminal B breast 
cancer treated with hormone therapy have a poor clinical 
outcome in the METABRIC dataset. Our previous study 
demonstrated that the efficacy of hormone therapy was low 
in patients with CTNNBIP1high and PKCζhighCTNNBIP1high 
luminal B breast cancer (33). However, the relationship 
between cancer stemness and high CTNNBIP1 expression in 
luminal B breast cancer is unclear. Our previous studies have 
also demonstrated that patients with PKCζhighCTNNBIP1high or 
PKCζhighALDH1A3high breast cancer had poor clinical outcomes 
among patients with the luminal B subtype (33, 54). 
Therefore, to examine the association between ALDH1A3 
expression and the effect of hormone therapy in patients with 
luminal B breast cancer with high CTNNBIP1 expression, the 
association between CTNNBIP1 and ALDH1A3 expression 
and the effect of hormone therapy was analyzed in patients 
with luminal B breast cancer, and in patients with luminal A 
breast cancer, using the METABRIC dataset. The results 
indicated that patients with high expression of both 
CTNNBIP1 and ALDH1A3 with luminal A and luminal B 
subtypes treated without hormone therapy did not exhibit 
poor clinical outcomes (Figure 1A and B). High expression of 
both CTNNBIP1 and ALDH1A3 in patients with the luminal A 
subtype treated with hormone therapy also was not 
associated with poor clinical outcomes (Figure 1C). However, 
patients with CTNNBIP1highALDH1A3high luminal B breast 
cancer treated with hormone therapy had a poor prognosis 
(p=0.017; log‑rank test) (Figure 1D). Multivariate analysis 
also showed that patients with CTNNBIP1highALDH1A3high 
luminal B breast cancer treated with hormone therapy had 
a poor prognosis compared with CTNNBIP1lowALDH1A3low 
patients (hazard ratio=2.08; 95%CI=1.04‑4.16; p=0.04), 
while patients with CTNNBIP1highALDH1A3high luminal A 



breast cancer treated with hormone therapy did not (Table 
I). These results suggested that hormone therapy was not 
effective for luminal B breast cancer with high CTNNBIP1 and 
ALDH1A3 expression. 

Patients with CTNNBIP1highALDH1A3high luminal B breast 
cancer treated with aromatase inhibitors as hormone 
therapy have poor clinical outcomes based on the dataset 
from TCGA. To validate the results in the METABRIC 
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Figure 1. Continued
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Figure 1. Disease‐specific survival Kaplan‐Meier analyses of patients with luminal breast cancer according to CTNNBIP1 and ALDH1A3 expression 
and hormone therapy. (A‐D) Molecular Taxonomy of Breast Cancer International Consortium data were downloaded from cBioPortal. (A) Patients 
with luminal A breast cancer and (B) patients with luminal B breast cancer who were treated without hormone therapy. (C) Patients with luminal A 
breast cancer and (D) patients with luminal B breast cancer who were treated with hormone therapy. (E‐H) The Cancer Genome Atlas Pan‐Cancer 
Atlas data was downloaded from cBioPortal. (E) Patients with luminal A breast cancer and (F) patients with luminal B breast cancer who were treated 
without hormone therapy. (G) Patients with luminal A breast cancer and (H) patients with luminal B breast cancer who were treated with hormone 
therapy. Comparison of the CTNNBIP1highALDH1A3high vs. CTNNBIP1highALDH1A3low vs. CTNNBIP1lowALDH1A3high vs. CTNNBIP1lowALDH1A3low 

groups of patients. p‐values were calculated using the Cochran‐Mantel‐Haenszel generalized log‐rank test. The adjusted p‐values for the 
CTNNBIP1highALDH1A3high group vs. CTNNBIP1highALDH1A3low, CTNNBIP1lowALDH1A3high and CTNNBIP1lowALDH1A3low groups were determined 
using the Holm method. CTNNBIP1: Catenin β interacting protein 1; ALDH1A3: aldehyde dehydrogenase 1 family member A3.



dataset, another breast cancer cohort, TCGA Pan‑Cancer 
Atlas, was analyzed. TCGA Pan‑Cancer Atlas dataset was 
used to examine the effects of hormone therapy in luminal 
A and B breast cancer with high CTNNBIP1 and ALDH1A3 
expression. As shown in Figure 1E‑H, unlike in the 
METABRIC dataset, patients classified as CTNNBIP1high 

ALDH1A3high and treated with hormone therapy did not 
exhibit a poor prognosis in the luminal A and luminal B 
subtypes, although patients classified as CTNNBIP1high 

ALDH1A3high and treated with hormone therapy had the 
worst prognosis. Multivariate Cox regression analyses 
similarly showed no significant differences or were not 
analytically feasible (data not shown). The discrepancy in 
the results between the two cohorts may be due to the 
smaller number of patients, shorter observation period 
and more censoring in the dataset from TCGA compared 
with the METABRIC dataset. However, for hormone 
therapy in the luminal A and B subtypes, the dataset from 
TCGA included data on drugs with two different methods 
of action, including tamoxifen and aromatase inhibitors. As 

shown in Figure 2, patients with CTNNBIP1highALDH1A3high 
luminal B breast cancer treated with tamoxifen did not 
exhibit a poor clinical outcome. However, patients with 
CTNNBIP1highALDH1A3high luminal B breast cancer treated 
with aromatase inhibitors exhibited a poor prognosis 
(p=0.047; log‑rank test) (Figure 2). These results suggested 
that the decreased effectiveness of hormone therapy in 
patients with CTNNBIP1highALDH1A3high luminal B breast 
cancer in the METABRIC dataset was due to the decreased 
effectiveness of aromatase inhibitors, as shown by the 
dataset from TCGA. Thus, patients with CTNNBIP1high 

ALDH1A3high luminal B breast cancer treated with 
aromatase inhibitors exhibited a poor prognosis. 

 
Patients with PKCζhighCTNNBIP1highALDH1A3high luminal B 
breast cancer treated with aromatase inhibitors exhibit poor 
clinical outcomes. Our recent study demonstrated that 
patients with PKCζhigh and CTNNBIP1highluminal B breast 
cancer treated with aromatase inhibitors exhibited poorer 
clinical outcomes among luminal B breast cancers (33). 
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Table I. Disease‐specific survival multivariate Cox regression analyses according to CTNNBIP1 and ALDH1A3 expression in patients with different 
luminal subtypes of breast cancer treated with hormone therapy in the Molecular Taxonomy of Breast Cancer International Consortium dataset. 
 
Patient group                                                                                          Hazard ratioa                                                           95% confidence interval                                 p‑Valueb 
 
A, Without hormone therapy 

Luminal A (CTNNBIP1highALDH1A3high vs.) 
  CTNNBIP1highALDH1A3low                                                                                                                        1.61                                                           0.78‑3.31                                                   0.19 
  CTNNBIP1lowALDH1A3high                                                                                                                        0.83                                                           0.32‑2.12                                                   0.70 
  CTNNBIP1lowALDH1A3low                                                                                                                          0.62                                                           0.22‑1.75                                                   0.37 
Luminal B (CTNNBIP1highALDH1A3high vs.) 
  CTNNBIP1highALDH1A3low                                                                                                                        0.31                                                           0.04‑2.63                                                   0.29 
  CTNNBIP1lowALDH1A3high                                                                                                                        0.09                                                           0.00‑2.45                                                   0.15 
  CTNNBIP1lowALDH1A3low                                                                                                                          0.14                                                           0.02‑1.03                                                   0.05 
 
B, With hormone therapy 
Luminal A (CTNNBIP1highALDH1A3high vs.) 
  CTNNBIP1highALDH1A3low                                                                                                                        0.98                                                           0.50‑1.90                                                   0.95 
  CTNNBIP1lowALDH1A3high                                                                                                                        1.77                                                           0.88‑3.55                                                   0.11  
  CTNNBIP1lowALDH1A3low                                                                                                                          1.08                                                           0.58‑2.00                                                   0.81  
Luminal B (CTNNBIP1highALDH1A3high vs.) 
  CTNNBIP1highALDH1A3low                                                                                                                        3.23                                                         1.00‑10.48                                                  0.05 
  CTNNBIP1lowALDH1A3high                                                                                                                        1.42                                                           0.99‑2.04                                                   0.05 
  CTNNBIP1lowALDH1A3low                                                                                                                          2.08                                                           1.04‑4.16                                                   0.04 
 
aHazard ratios of the CTNNBIP1highALDH1A3high group vs. CTNNBIP1highALDH1A3low, CTNNBIP1lowALDH1A3high and CTNNBIP1lowALDH1A3low 

groups were adjusted using age, chemotherapy, and radiotherapy as the confounding factor, as estimated using the Cox proportional hazard model. 
bSignificant differences are shown in bold. CTNNBIP1: Catenin β interacting protein 1; ALDH1A3: aldehyde dehydrogenase 1 family member A3.



Patients with PKCζhigh and ALDH1A3high luminal B breast 
cancer treated with aromatase inhibitors also have poor 
clinical outcomes (54). Therefore, the present study 
examined the population of patients with the luminal B 
subtype with the PKCζhighCTNNBIP1highALDH1A3high 
expression profile. As shown in Figure 3A and B, the 
proportions of patients with the PKCζhighCTNNBIP1high 

ALDH1A3high expression profile among patients with luminal 
B breast cancer were as follows: METABRIC dataset, 12.9% 
(45/348); TCGA dataset, 4.2% (8/192). In the METABRIC 
dataset, patients with PKCζhighCTNNBIP1highALDH1A3high 
luminal B breast cancer treated with hormone therapy 
exhibited a poor prognosis compared with others (p<0.001; 
log‑rank test) (Figure 3). Furthermore, in the dataset from 
TCGA, although the number of patients with 
PKCζhighCTNNBIP1highALDH1A3high luminal B breast cancer 
treated with aromatase inhibitors was small, patients with 
PKCζhighCTNNBIP1highALDH1A3high luminal B breast cancer 
treated with aromatase inhibitors also exhibited a poor 
prognosis compared with others (p<0.001; log‑rank test) 
(Figure 3). The results suggested that PKCζ and CTNNBIP1 
cooperatively contribute to disease progression in 
ALDH1A3‑positive luminal B breast cancer, possibly by 
enhancing the stemness of cancer stem cells. Furthermore, 
for patients with PKCζhighCTNNBIP1high ALDH1A3high luminal 
B breast cancer, tamoxifen treatment may be more effective 
than aromatase inhibitor treatment. 
 
Discussion 
 
The present study demonstrated that high PKCζ, 
CTNNBIP1 and ALDH1A3 expression contributed to the 
decreased effectiveness of hormone therapy and 
aromatase inhibitor treatment in patients with the luminal 
B subtype. These results suggested that PKCζ and 
CTNNBIP1 are involved in progression of the ALDH1A3‑
positive luminal B cancer subtype and contribute to the 
decreased effectiveness of hormone therapy for the 
luminal B subtype. 

The present study revealed that high expression of 
both CTNNBIP1 and ALDH1A3 contributed to the 

decreased effectiveness of hormone therapy in patients 
with the luminal B subtype in the METABRIC dataset 
(Figure 1 and Table I). Consistently, high expression of 
both CTNNBIP1 and ALDH1A3 was associated with 
decreased effectiveness of aromatase inhibitor therapy in 
patients with the luminal B subtype in TCGA Pan‑Cancer 
Atlas dataset (Figure 2). Our recent study demonstrated 
that patients with high expression of CTNNBIP1 and PKCζ 
had poor clinical outcomes among patients with the 
luminal B subtype treated with hormone therapy, 
especially aromatase inhibitors (33). High expression of 
both PKCζ and ALDH1A3 is also associated with poor 
clinical outcomes in patients with luminal B breast cancer 
treated with hormone therapy, especially aromatase 
inhibitors (54). Thus, PKCζ and CTNNBIP1 appear to 
cooperate to reduce the effectiveness of aromatase 
inhibitors in the ALDH1A3‑positive luminal B subtype. 
However, the molecular mechanism of the relationship 
between PKCζ and CTNNBIP1 and poor effectiveness of 
aromatase inhibitors in ALDH1A3‑positive luminal B 
breast cancer remains unclear. PKCζ interacts with scaffold 
protein p62 (48, 60‑62). Patients with the luminal B 
subtype highly expressing p62 exhibit a poor prognosis, 
and p62 deficiency in luminal B cell lines suppresses 
tumor‑sphere formation (63, 64). Furthermore, high 
expression of p62 and ALDH1A3 reduced the effectiveness 
of hormone therapy and aromatase inhibitor (65). Thus, 
the interaction between PKCζ and p62 may be involved in 
the PKCζ‑mediated decreased effectiveness of hormone 
therapy and aromatase inhibitors in ALDH1A3‑positive 
luminal B breast cancer. In addition to high ER expression, 
the luminal B subtype often expresses HER2 (10, 11). 
Thus, the present study aimed to examine the effect of the 
PKCζhighCTNNBIP1highALDH1A3high expression profile on 
HER2‑targeted therapy in the luminal B subtype using the 
dataset from TCGA, which included information on HER2‑
targeted therapy. However, the prognostic analysis was 
impossible as no deaths occurred among the patients who 
received HER2‑targeted therapy in the dataset from TCGA. 
Furthermore, because luminal B is highly proliferative, 
chemotherapy is usually administered. Therefore, the 
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effectiveness of HER2‑targeted therapy and chemotherapy 
in PKCζhighCTNNBIP1highALDH1A3high luminal B breast 
cancer remains to be determined. 

Another aPKC subtype, PKCλ, regulates the stem‑like 
properties of ALDH1A3‑positive CSCs such as tumor 

formation, cell survival, cell mortality and asymmetric 
cell division (66‑68). It is also important to analyze the 
differences in the functions of PKCζ and PKCλ in the 
resistance to hormone therapy in luminal B breast 
cancer. 
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Figure 2. Continued
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Figure 2. Disease‐specific survival Kaplan‐Meier analyses of patients with luminal breast cancer grouped according to CTNNBIP1 and ALDH1A3 
expression and treated with tamoxifen or aromatase inhibitors. (A‐H) The Cancer Genome Atlas Pan‐Cancer Atlas data was downloaded from 
cBioPortal. (A) Patients with luminal A breast cancer and (B) patients with luminal B breast cancer who were treated without tamoxifen. (C) Patients 
with luminal A breast cancer and (D) patients with luminal B breast cancer who were treated with tamoxifen. (E) Patients with luminal A breast 
cancer and (F) patients with luminal B breast cancer who were treated without aromatase inhibitors. (G) Patients with luminal A breast cancer and 
(H) patients with luminal B breast cancer who were treated with aromatase inhibitors. Comparison of the CTNNBIP1highALDH1A3high vs. 
CTNNBIP1highALDH1A3low vs. CTNNBIP1lowALDH1A3high vs. CTNNBIP1lowALDH1A3low groups of patients. p‐Values were calculated using the Cochran‐
Mantel‐Haenszel generalized log‐rank test. The adjusted p‐values for the CTNNBIP1highALDH1A3high group vs. CTNNBIP1highALDH1A3low, 
CTNNBIP1lowALDH1A3high and CTNNBIP1lowALDH1A3low groups were determined using the Holm method. CTNNBIP1: Catenin β interacting protein 
1; ALDH1A3: aldehyde dehydrogenase 1 family member A3.
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Figure 3. Disease‐specific survival Kaplan‐Meier analyses of patients with luminal B breast cancer according to PKCζ, CTNNBIP1 and ALDH1A3 
expression in patients treated with tamoxifen or aromatase inhibitors. (A and B) Three dimensional scatterplots of PKCζ, CTNNBIP1 and ALDH1A3 in 
luminal B breast cancer. Each graph is shown as a three dimensional scatterplot representing PKCζ, CTNNBIP1 and ALDH1A3 gene expression.  
• represents patients with PKCζhigh, CTNNBIP1high and ALDH1A3high profiles, whilst ○ represents patients with other PKCζ, CTNNBIP1 and ALDH1A3 
profiles. The number indicates the ratio of patients classified as PKCζhigh, CTNNBIP1high and ALDH1A3high. Comparison of PKCζ, CTNNBIP1 and ALDH1A3 
in luminal B breast cancer according to the (A) METABRIC data and (B) TCGA Pan‐Cancer Atlas data. METABRIC data was downloaded from cBioPortal. 
(C‐J) Kaplan‐Meier analyses of PKCζ, CTNNBIP1 and ALDH1A3 in luminal B breast cancer. (C) Patients with luminal B breast cancer who were treated 
without hormone therapy and (D) patients with luminal B breast cancer who were treated with hormone therapy. TCGA Pan‐Cancer Atlas data was 
downloaded from cBioPortal. (E) Patients with luminal B breast cancer who were treated without hormone therapy and (F) patients with luminal B 
breast cancer who were treated with hormone therapy. (G) Patients with luminal B breast cancer who were treated without tamoxifen and (H) patients 
with luminal B breast cancer who were treated with tamoxifen. (I) Patients with luminal B breast cancer who were treated without aromatase inhibitors 
and (J) patients with luminal B breast cancer who were treated with aromatase inhibitors. Comparison of PKCζhighCTNNBIP1highALDH1A3high vs. others 
(PKCζhighCTNNBIP1highALDH1A3low, PKCζhighCTNNBIP1lowALDH1A3high, PKCζlowCTNNBIP1highALDH1A3high, PKCζlowCTNNBIP1highALDH1A3low, 
PKCζlowCTNNBIP1lowALDH1A3high and PKCζlowCTNNBIP1lowALDH1A3low groups of patients). p‐Values were calculated using the Cochran‐Mantel‐
Haenszel generalized log‐rank test. METABRIC: Molecular Taxonomy of Breast Cancer International Consortium; TCGA: The Cancer Genome Atlas; 
CTNNBIP1: catenin β interacting protein 1; ALDH1A3: aldehyde dehydrogenase 1 family member A3; PKCζ: protein kinase Cζ.



Conclusion 
 
The present study demonstrated that PKCζ and CTNNBIP1 
are involved in ALDH1A3‑positive luminal B cancer subtype 
progression, and contribute to the decreased effectiveness 
of hormone therapy, especially aromatase inhibitors in 
patients with luminal B breast cancer. Therefore, it was 
concluded that, in luminal B breast cancer, PKCζ, CTNNBIP1 
and ALDH1A3 could serve as molecular drug targets for 
treatment and prognostic biomarkers to predict the 
effectiveness of hormone therapy. 
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