The Impact of Being Underweight on the Prognosis of Older Patients With Early Breast Cancer

YUMIKO ISHIZUKA1, YOSHIYA HORIMOTO1, MIDORI MORITA2,3, YUKINO KAWAMURA4, KATSUTOSHI SEKINE5, SAYAKA OBAISHI6, YUKI KOJIMA7, EMI TOKUDA8, TORU HIGUCHI9 and AKIHIKO SHIMOMURA4

1Department of Breast Oncology, Juntendo University Faculty of Medicine, Tokyo, Japan; 2Division of Endocrine and Breast Surgery, Kyoto Prefectural University of Medicine, Kyoto, Japan; 3Department of Surgery, Saiseikai Shiga Hospital, Shiga, Japan; 4Department of Breast and Medical Oncology, National Center for Global Health and Medicine, Tokyo, Japan; 5Medical Oncology Center, Saitama City Hospital, Saitama, Japan; 6Department of General Surgical Science, Gunma University, Gunma, Japan; 7Department of Medical Oncology, National Cancer Center Hospital, Tokyo, Japan; 8Department of Medical Oncology, Fukushima Medical University, Fukushima, Japan; 9Breast Surgery Unit, Japanese Red Cross Saitama Hospital, Saitama, Japan

Abstract. Background/Aim: The number of older patients with breast cancer has been increasing and a major challenge is to develop optimal treatment strategies for these patients, who often have comorbidities. Obesity is reportedly a poor prognostic factor in breast cancer, however there is limited research on underweight patients. Clarifying the relationship between physique and prognosis may contribute to the establishment of optimal treatment strategies for older patients with breast cancer. Patients and Methods: This retrospective study examined clinicopathological data from a multicenter collaborative database on 1,076 patients aged 70 years or older who had undergone curative surgery. According to the body mass index (BMI), patient physique was defined as underweight (<18.5 kg/m²), normal (18.5-24.9 kg/m²) or obese (≥25 kg/m²). In this study, we explored the relationship between the physique of patients with breast cancer and outcomes. Results: Underweight patients had a significantly lower rate of chemotherapy administration (p=0.017) and a higher rate of presence of other cancer (p=0.022). During the observation period (median of 75.2 months), 133 patients (12%) developed recurrent disease and 131 patients (12%) died. Age, BMI, tumor size, progesterone receptor and the presence of other cancer were independent factors relating to overall survival (p<0.001, p=0.027, p=0.002, p=0.008 and p=0.005, respectively). Patients with a low BMI had a significantly shorter overall survival, but there was no association with disease-free survival in this subset of patients. Conclusion: Overall survival was shorter in underweight older patients with breast cancer. Our data indicate that being underweight should be considered both in treatment decisions and in future studies of outcomes for older patients with breast cancer.

Correspondence to: Yoshiya Horimoto, Department of Breast Oncology, Juntendo University Faculty of Medicine, 2-1-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan. E mail: horimoto@juntendo.ac.jp

Key Words: Breast neoplasms, prognosis, underweight, body mass index, physique.

©2023 International Institute of Anticancer Research
www.iiar-anticancer.org

This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY-NC-ND) 4.0 international license (https://creativecommons.org/licenses/by-nc-nd/4.0).
or more and revealed that adjuvant chemotherapy did not improve their survival (7). While it is impossible to draw general conclusions about the efficacy of chemotherapy due to inter-study variability in treatment details and target patients, there is a need for research into what treatment has true benefit in older patients with breast cancer.

In the current study, we focused on the physique of patients. Obesity is a risk factor for breast cancer in post-menopausal women (8, 9) and the recurrence rate in obese patients with breast cancer is reportedly higher (10, 11). While many studies have investigated the relationship between obesity and the prognosis of breast cancer (10-15), only a few have examined the characteristics of underweight patients with breast cancer (13, 16, 17). In other diseases, it is reported that underweight patients have poorer outcomes (18-20). However, the prognosis of underweight older patients with breast cancer remains unclear. We posited that a better understanding of the relationship between physique and prognosis might help in the development of future treatment strategies. As such, in this study, we explored the relationship between patient physique and outcomes, along with other clinicopathological factors, using retrospective data from older patients with breast cancer.

Patients and Methods

Patients. We recently established a database of 1,095 Japanese women aged over 70 years with invasive breast cancer who underwent curative...
surgery between January 2008 and December 2013 at seven institutions (National Cancer Center Hospital, Juntendo University, Gunma University, Kyoto Prefectural University of Medicine, Fukushima Medical University, Japanese Red Cross Saitama Hospital and Saiseikai Shiga Hospital) (7). Patients who were diagnosed with non-invasive breast cancer, who had bilateral breast cancer, or who lacked clinical data were excluded. Clinicopathological data and details of the clinical course were obtained from the patient’s medical records. Of these, information about the physique of 1,076 patients was available, and these were the subjects of this study. The median age of these patients was 75 (range=70-93) years. According to the body mass index (BMI), a patient’s physique was defined as either underweight (BMI <18.5 kg/m²), normal (18.5-24.9 kg/m²) or obese (≥25 kg/m²).

The primary endpoint of the current study was overall survival (OS), defined as the length of time from primary surgery to the death from any cause, and the secondary endpoint was disease-free survival (DFS), defined as the length of time from primary surgery to any recurrence of breast cancer. Pathological examination was carried out based on the fifth edition of the WHO Classification of Tumors of the Breast. Tumor grade was judged based on the modified Bloom–Richardson histological grading system.

This study was approved by the Institutional Review Board of each hospital (approval number 2019-093). The need for written informed consent was waived due to it being a retrospective study. We present the findings following the format recommended by the Strengthening the Reporting of Observational Studies in Epidemiology (STROBE) guidelines.

Results

Clinicopathological features of invasive carcinoma in relation to physique. Clinicopathological features of patients in relation to physique are shown in Table I. Samples were stratified by estrogen receptor (ER), progesterone receptor (PgR) (hormone receptor, HR) and human epidermal growth factor receptor type 2 (HER2) status, as luminal-HER2− (HR+/HER2−), luminal-HER2+ (HR+/HER2+), HER2+ (HR−/HER2+), and triple-negative (HR−/HER2−). Of 1,076 patients, 103 (9.6%) were underweight, 639 (59.4%) were normal weight, and 334 (31.0%) were obese. There was no significant difference in age among groups (age distributions are shown in Figure 1). Compared with the normal and obese groups, the underweight group had a significantly lower rate of chemotherapy (p=0.017) and a significantly higher rate of having a presence of other cancer (p=0.022), while diabetes was more frequent in the obese group (p=0.016).

Patient outcomes. We evaluated clinicopathological factors in relation to patient outcome. During the observation period (median=75.2 months, range=0.2-147.9 months), 133 patients had tumor recurrence and 131 patients died, including 47 who died due to breast cancer; of the 1,076 patients, there was no data...
BMI, larger tumor size, PgR− and the presence of other cancer were independent factors for poor DFS \((p<0.001, p=0.038, p=0.001, p=0.001)\), wherein patients with triple-negative tumors had the highest rate of recurrence (31.2%). Differences were also observed in relation to patient death \((p<0.001)\), where patients with HER2+ or triple-negative breast cancer had higher rates of death \((20.6\% \text{ and } 24.0\%), p=0.027\). In multivariate analysis, older age, low BMI had a significantly shorter OS, although no significant difference in DFS was observed.

Discussion

The current study found OS was shorter in underweight older patients with breast cancer who had undergone curative surgery. However, the breast cancer recurrence rate was not high in this population, suggesting that short survival was driven by factors other than breast cancer. Being underweight is reportedly a factor of poor prognosis in patients with cancer (21, 22). A higher recurrence rate and worse mortality have also been reported in underweight patients with breast cancer (14, 23). The definite cause of this remains unknown. Moon et al. suggested that chronic undernutrition may reduce the effectiveness of systemic treatments (23). However, in our study, this was not the case as recurrent disease was not more common in underweight patients compared to the remaining patients. Poorer prognosis in underweight patients has been observed in other diseases apart from cancer. For example, poorer outcomes have been reported in underweight patients with hypertension and cardiovascular diseases (18-20).

Prostate prognosis in underweight patients is likely the result of multiple interacting factors. However, increased 'vulnerability' due to sarcopenia and frailty may be a key reason. It is suggested that sarcopenia and frailty should be considered when deciding the treatment plan for older patients with cancer (24-26). Sarcopenia with muscle atrophy leads to a higher risk of falls, fractures, reduced quality of life, and increased risk of infection and mortality (27-30). Frailty is a multidimensional concept that includes physical ability and social and environmental elements, and is known to be associated with an increased risk of death (31, 32). Frailty is composed of various components (33), with sarcopenia considered one such component (34). BMI is also sometimes included as an evaluation factor (35-37). Thus, we suspect this underlying vulnerability might be a cause of why, in our study, underweight patients had shorter OS. It should be
noted however, that sarcopenia is defined by muscle mass and walking speed, so strictly speaking, being underweight does not automatically indicate sarcopenia. Due to lack of detailed data, we were unable to analyze whether being underweight affected patient outcomes by contributing to the presence of sarcopenia and frailty; further studies designed to specifically evaluate these events are warranted.

Moreover, another possible reason might be the presence of other malignant diseases. In the present study, underweight patients, especially those who had luminal-HER2- tumors,
frequently had other cancer that may have contributed to their shorter OS. In addition, we were unable to test this hypothesis due to a lack of information on other cancer, such as the primary organ, time of onset, clinical stage and treatment. Whether patients had lost weight due to other cancer or related treatments is also unknown. The cause of death for some of the patients was also unknown. This lack of some data was a major limitation of this retrospective study.

In conclusion, OS was shorter in underweight elderly patients with breast cancer. As such, being underweight may need to be considered when discussing treatment options and studying patient outcomes in older patients with breast cancer.
Table III. Clinicopathological factors relating to disease-free survival in elderly patients with breast cancer.

<table>
<thead>
<tr>
<th>Variable</th>
<th>Univariate</th>
<th>Multivariate</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>HR</td>
<td>95% CI</td>
</tr>
<tr>
<td>Age</td>
<td>2.60*</td>
<td>1.07-6.30</td>
</tr>
<tr>
<td>BMI <18.5 vs. ≥18.5 kg/m²</td>
<td>0.86</td>
<td>0.63-1.59</td>
</tr>
<tr>
<td>Tumor size</td>
<td>34.27*</td>
<td>13.0-82.1</td>
</tr>
<tr>
<td>pN Positive vs. negative</td>
<td>1.93</td>
<td>1.34-2.78</td>
</tr>
<tr>
<td>Tumor grade High vs. low/moderate</td>
<td>2.41</td>
<td>1.69-3.45</td>
</tr>
<tr>
<td>ER Positive vs. negative</td>
<td>0.35</td>
<td>0.24-0.52</td>
</tr>
<tr>
<td>PgR Positive vs. negative</td>
<td>0.42</td>
<td>0.29-0.62</td>
</tr>
<tr>
<td>HER2 Positive vs. negative</td>
<td>1.03</td>
<td>0.58-1.84</td>
</tr>
<tr>
<td>Chemotherapy Yes vs. no</td>
<td>1.82</td>
<td>1.25-2.64</td>
</tr>
<tr>
<td>Presence of other cancers</td>
<td>Yes vs. no</td>
<td>0.58</td>
</tr>
</tbody>
</table>

BMI: Body mass index; CI: confidence interval; ER: estrogen receptor; HER2: human epidermal growth factor receptor type 2; HR: hazard ratio; PgR: progesterone receptor; pN: pathological N stage. *Across range. Statistically significant p-values are shown in bold.

Table IV. Clinicopathological factors relating to overall survival in elderly patients with breast cancer.

<table>
<thead>
<tr>
<th>Variable</th>
<th>Univariate</th>
<th>Multivariate</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>HR</td>
<td>95% CI</td>
</tr>
<tr>
<td>Age</td>
<td>6.55*</td>
<td>2.73-15.1</td>
</tr>
<tr>
<td>BMI <18.5 vs. ≥18.5 kg/m²</td>
<td>1.61</td>
<td>0.99-2.62</td>
</tr>
<tr>
<td>Tumor size</td>
<td>21.02*</td>
<td>7.27-54.6</td>
</tr>
<tr>
<td>pN Positive vs. negative</td>
<td>1.89</td>
<td>1.30-2.75</td>
</tr>
<tr>
<td>Tumor grade High vs. low/moderate</td>
<td>2.00</td>
<td>1.39-2.88</td>
</tr>
<tr>
<td>ER Positive vs. negative</td>
<td>0.49</td>
<td>0.32-0.74</td>
</tr>
<tr>
<td>PgR Positive vs. negative</td>
<td>0.43</td>
<td>0.30-0.64</td>
</tr>
<tr>
<td>HER2 Positive vs. negative</td>
<td>1.42</td>
<td>0.83-2.41</td>
</tr>
<tr>
<td>Chemotherapy Yes vs. no</td>
<td>1.45</td>
<td>0.98-2.16</td>
</tr>
<tr>
<td>Presence of other cancers</td>
<td>Yes vs. no</td>
<td>2.74</td>
</tr>
</tbody>
</table>

BMI: Body mass index; CI: confidence interval; ER: estrogen receptor; HER2: human epidermal growth factor receptor type 2; HR: hazard ratio; PgR: progesterone receptor; pN: pathological N stage. *Across range. Statistically significant p-values are shown in bold.

Conflicts of Interest

AS reports grants and personal fees from Chugai Pharmaceutical, grants and personal fees from AstraZeneca, grants from Daiichi Sankyo, grants from Eisai, grants from Taiho Pharmaceutical, personal fees from Eli-Lilly, outside the submitted work. Other Authors have nothing to disclose.

Authors’ Contributions

Yumiko Ishizuka, Yoshiiya Horimoto, Midori Morita, Eti Tokuda, Toru Higuchi, and Akihiko Shimomura designed this study. Yumiko Ishizuka, Yoshiiya Horimoto, Midori Morita, Yukino Kawamura, Katsutoshi Sekine, Sayaka Obayashi, Yuki Kojima, Eti Tokuda, Toru Higuchi, and Akihiko Shimomura collected clinical data. Yumiko Ishizuka and Yoshiiya Horimoto conducted data analysis and statistics. Yumiko Ishizuka and Yoshiiya Horimoto drafted the original manuscript and Midori Morita, Yukino Kawamura, Yuki Kojima, Eti Tokuda, Toru Higuchi, and Akihiko Shimomura substantively revised it. All Authors revised and approved the final version of the article.

Acknowledgements

The Authors sincerely appreciate Clear Science Pty Ltd for language editing.

References

2 Cancer Incidence of Japan. Cancer and Disease Control Division, Ministry of Health, Labour and Welfare. Available at:

15 Selmer R, Tverdal A: Body mass index and cardiovascular mortality at different levels of blood pressure: a prospective study of Norwegian men and women. J Epidemiol Community Health 49(3): 265-270, 1995. DOI: 10.1136/jech.49.3.265

Received September 18, 2023
Revised October 8, 2023
Accepted October 12, 2023

686