Abstract. Background/Aim: Odontogenic cysts belong to a type of lesions with endodontic origin that in some cases mimic even aggressive odontogenic tumors sharing with them similar radiographic features. Periapical cysts (PCs) belong to the inflammatory odontogenic cysts sub-category and rarely squamous cell carcinoma arises from their hyperplastic/dysplastic epithelia. This study aimed to explore the impact of cluster differentiation 34 (CD34) protein expression combined with micro vessel density (MVD) on PCs. Materials and Methods: Forty-eight (n=48) archival, formalin-fixed, and paraffin-embedded PC tissue specimens were included in the study. Immunohistochemistry (IHC) was performed in the corresponding tissue sections using an anti-CD34 antibody. CD34 expression levels and also MVD in the examined cases were measured by implementing a digital image analysis protocol. Results: CD34 over-expression (moderate to high staining intensity levels) were detected in 29/48 (60.4%) cases, whereas the rest of them (19/48-39.6%) were characterized by low levels of expression. Extended MVD was identified in 26/48 (50.1%) cases correlated with CD34 over-expression, epithelial hyperplasia (p-value=0.001), and marginally with inflammatory infiltration level in the examined lesions (p-value=0.056). Conclusion: CD34 over-expression combined with increased MVD is associated with a neoplastic-like (hyperplastic) phenotype in PCs as a result of increased neo-angiogenic activity. These histopathological characteristics rarely form an eligible substrate for squamous cell carcinoma onset in untended cases.

Impact of CD34-dependent Micro Vessel Density on Periapical Odontogenic Cysts

VASILIKI MATHIOU1, EVANGELOS TSIAMBAS2,3, SOTIRIOS MAIPAS3, IRENE THYMARA3, DIMITRIOS PESCHOS4, ANDREAS C. LAZARIS3 and NIKOLAOS KAVANTZAS3

1Mathiou Dental Clinic, Athens, Greece; 2Department of Cytology, 417 Veterans Army Hospital (NIMTS), Athens, Greece; 31st Department of Pathology, Medical School, National and Kapodistrian University, Athens, Greece; 4Department of Physiology, Medical School, University of Ioannina, Ioannina, Greece

Correspondence to: Evangelos Tsiambas, MD, MSc, Ph.D., 17 Patriarchou Grigorou E’ Street, Ag. Paraskevi, 153 41 Athens, Greece. E-mail: tsiambasecyto@yahoo.gr

Key Words: Periapical, odontogenic, cyst, microvascular, density, CD34.

©2023 International Institute of Anticancer Research
www.iiar-anticancer.org

This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY-NC-ND) 4.0 international license (https://creativecommons.org/licenses/by-nc-nd/4.0).
cells express the marker in high levels (11-13). Furthermore, CD34 enhances T-cell motivation leading to lymph node infiltration (14). Concerning MVD measurement in PCs, CD34 is a sensitive and specific marker based on immunohistochemistry (IHC) protocols implementation in a variety of tissue substrates including cysts and neoplastic lesions such as ameloblastomas and oral carcinomas (15, 16). In the current experimental, research study, we explored the impact of CD34 protein expression combined with MVD on a PCs series using modern techniques.

Materials and Methods

Study group. A series of forty-eight (n=48) archival, formalin-fixed, and paraffin-embedded PC tissue specimens were analyzed. Among patients, 26 were males, whereas the rest of them (n=22) females. The National and Kapodistrian University Medical Ethics Committee consented to the use of these tissues in the 1ST Department of Pathology, Medical School, National and Kapodistrian University, Athens, Greece for research purposes, according to World Medical Association Declaration of Helsinki. The tissue samples were fixed in neutral-buffered formalin. Hematoxylin and eosin (H&E)-stained slides of the corresponding samples were reviewed for confirmation of histopathological diagnoses. All lesions were classified according to the histological typing criteria of World Health Organization (WHO) for oral and especially odontogenic lesions (17).

Antibodies and IHC assay. Ready-to-use mouse monoclonal anti-CD34 (clone QBEnd10, Dako, Glostrup, Denmark) antibody was selected at a dilution of 1:200. The IHC assay was implemented on 4 μm serial tissue sections obtained from the corresponding tissue blocks. Firstly, the slides were de-paraffinized followed by rehydration. According to the manufacturer’s guidelines, the hydrogen peroxide/streptavidin/biotin protocol (Dako) combined with EnVision FLEX TBS (Tris-buffered saline: 0.05 M Tris/HCl, 0.15 M NaCl, pH=7.6) wash Buffer (20x) was applied. Diaminobenzidine-tetrahydrochloride (DAB–Dako) containing 0.1% hydrogen peroxide was used as a chromogen. After its incubation, the tissue sections were counterstained using Hematoxylin, for 5 min, dehydrated, and finally cover-slipped. The primary antibody was omitted in the case of control slides. An automated staining system (Biogenex, Fremont, CA, USA) was used for the current IHC procedure. Endothelial cell continuous, membranous staining was considered suitable for the marker, according to manufacturers’ data sheets (Figure 1A). Normal endothelia expressing the protein were used as the control group.

Digital image analysis (DIA) assay. CD34 protein expression levels and MVD levels were estimated qualitatively by measuring the corresponding CD34 staining intensity levels (densitometry calculation) in the stained endothelial cells and their number, respectively. A DIA assay was implemented based on a semi-automated system (hardware: Microscope CX-31, Olympus, Melville, NY, USA; Digital camera, Sony, Tokyo, Japan; Windows XP/NIS-Elements Software AR v3.0, Nikon Corp., Tokyo, Japan). According to the digitized algorithm, CD34-related stained areas were detected (5 optical fields at ×400 magnification) and a digital database including the corresponding snapshots was constructed. A specific macro (membranous expression pattern) was assessed as a matrix for the measurements. Based on an algorithm, an extensive spectrum of continuous grey scale values (0-255) at the RedGreenBlue (RGB) color spectrum was eligible for calculating different protein expression levels (Figure 1B). Staining intensity values decreasing to 0 correspond to a progressive protein over-expression. In contrast, increased values to 255 lead a progressive loss of its staining intensity. MVD levels were measured as a number of CD34-stained endothelial ring-like structures (vessels) per high power optical field. Total results for CD34/MVD and DIA values are demonstrated in Table I.

Statistical analysis. In order to analyze statistically the extracted results, we applied the statistics software package Statisticav. 6.0 (StatSoft Power Solutions Dell, TIBCO Soft, Palo Alto, CA, USA). Quantitative variables were presented as mean±standard deviation, whereas qualitative variables were presented in frequency tables. To evaluate the relationship between qualitative and quantitative variables, because of the small number of subjects in each group, the nonparametric Mann–Whitney and Kruskal–Wallis tests were applied. To evaluate the relationship between independent qualitative variables, where appropriate, the chi-square test for linear trend and Fisher exact test were applied. Statistical significance (p) was evaluated in pairs and differences <0.05 were considered statistically significant. Total IHC results and differences (p-values) are described in Table I.

Results

All examined PC cases expressed the marker in different levels. CD34 over-expression (moderate to high staining intensity levels) was detected in 29/48 (60.4%) cases, whereas the rest of them (19/48-39.6%) were characterized by low levels of expression. Increased MVD was identified in 26/48 (50.1%) cases -as an absolute number of endothelial ring-like structures -and correlated with CD34 over-expression, epithelial hyperplasia (p-value=0.001), and marginally with inflammatory infiltration level in the examined lesions (p-value=0.001), whereas no correlation was established with sex (p-value=0.534).

Discussion

Approaching the non- or neoplastic dental lesions, periodontitis is a frequent and progressively severe inflammation mediated by bacteria accumulation combined or not with other factors such as low-level mouth hygiene conditions and tobacco chronic consumption (18). More specifically, its onset includes gingivitis presenting clinical signs such as swollen gums, bleeding, plaque, and teeth pain. Besides periodontitis, peri-implantitis is characterized by similar clinical signs Interestingly, there is a genetic predisposition in specific populations (19). Furthermore, chronic colon inflammation (colitis) leads indirectly to periodontitis by altering specific metabolic pathways (20). Additionally, Helicobacter pylori (H. pylori) stomach infection was suggested to be present in chronic periodontitis patients,
but their exact relation is under investigation (21). In conjunction, apical periodontitis is the result of chronic endodontic inflammation mediated by bacteria of the Porphyromonas spp. including predominantly Porphyromonas endodontalis, and Porphyromonas gingivalis (22, 23).

Odontogenic cysts - combined or not with periodontitis - represent frequent lesions in adults. Referring to PCs, they are characterized histologically by non-keratinized stratified squamous epithelium including thin (one or two) layers combined with excessive fibrous connective tissue and

Table I. Total CD34 immunohistochemistry and micro vessel density (MVD) results and statistics.

<table>
<thead>
<tr>
<th>Clinicopathological parameters</th>
<th>CD34 expression</th>
<th>p-Value</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>OE</td>
<td>L</td>
</tr>
<tr>
<td>PCs (n=48)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sex</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Male</td>
<td>26/48 (54%)</td>
<td>17/48 (35%)</td>
</tr>
<tr>
<td>Female</td>
<td>22/48 (46%)</td>
<td>12/48 (25%)</td>
</tr>
<tr>
<td>Epithelial hyperplasia</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hyperplastic</td>
<td>23/48 (48%)</td>
<td>21/48 (44%)</td>
</tr>
<tr>
<td>Non-hyperplastic</td>
<td>25/48 (52%)</td>
<td>8/48 (17%)</td>
</tr>
<tr>
<td>Inflammation</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Inflammatory infiltrated</td>
<td>21/48 (44%)</td>
<td>14/48 (29%)</td>
</tr>
<tr>
<td>Non-inflammatory infiltrated</td>
<td>27/48 (56%)</td>
<td>15/48 (31%)</td>
</tr>
<tr>
<td>MVD</td>
<td></td>
<td></td>
</tr>
<tr>
<td>H</td>
<td>26/48 (54%)</td>
<td>25/48 (52%)</td>
</tr>
<tr>
<td>L</td>
<td>22/48 (46%)</td>
<td>4/48 (9%)</td>
</tr>
</tbody>
</table>

*MVD vs. epithelial hyperplasia, MVD vs. inflammation. PCs: Periapical cysts; CD34 OE: Over-expression, staining intensity values ≤117 (spectrum between 109 and 117), L: Low, staining intensity values >139 (spectrum between 129 and 142); MVD H: High rates >15 micro vessels per optical field, L: Low rates <15 micro vessels per optical field. p-Values in bold indicate statistically significant differences.
inflammatory infiltration. Interestingly, there is a variety of non-malignant non-endodontic periapical lesions (NMNPLs) that mimic pure PCs (24). Additionally, pathological entities that share similar histological characteristics with PCs include squamous odontogenic tumors and non-neoplastic lesions with epithelial hyperplasia inside a radicular cyst (25).

In this study, we explored the role of CD34 protein expression combined with MVD in a series of PC tissues using IHC and DIA methods. We observed that CD34-dependent MVD was increased significantly in cases with epithelial hyperplasia and marginally with inflammatory infiltration. It seems that PCs incorporating these specific histological features demonstrate a more aggressive biological behavior (increased angiogenesis). Another study co-analyzed receptor for advanced glycation end products (RAGE), S100, and CD34 molecules in a series of periapical granuloma tissues (26). They reported elevated CD34 protein expression leading to endothelial hyperplasia (increased angiogenesis) in these inflammatory cystic lesions. Similarly, interleukin (IL)-17 – a molecule that acts as a cytokine has been found to be over-expressed in apical periodontitis lesions (periradicular cysts and granulomas) in conjunction with CD34 (27). Both of them promote inflammation and angiogenesis in them, respectively. CD34 over-expression is also observed in regenerative endodontic processes providing healing of periradicular lesions (28). Furthermore, quantitative digital analysis of MVD rates in PCs and other oral-dental lesions is superior compared to conventional eye-based evaluation. In the current study, we estimated MVD levels in a fast and accurate way using a digitized algorithm based on CD34 IHC expression levels. Our previous studies on oral malignancies are concordant with similar experimental studies (29-35). All of them suggest and enhance this practice because it provides a systematic screening and mapping of immunostained slides.

In conclusion, CD34 over-expression combined with increased MVD is correlated with a neoplastic-like (hyperplastic) phenotype in PCs as a result of increased neo-angiogenic and inflammatory activity. A subset of PCs characterized by elevated MVD rates demonstrate significant epithelial hyperplasia and increased inflammatory infiltration, mimicking neoplastic lesions. These histopathological characteristics rarely form an eligible substrate for squamous cell carcinoma onset in untended cases.

Conflicts of Interest

The Authors have no conflicts of interest to declare in relation to this study.

Authors’ Contributions

VM, ET: design of the study, ET, VM: manuscript writing, IT, DP, ACL, NK: academic advisors: SM: collection and management of references’ data. All Authors read and approved the final manuscript.

References

Received December 21, 2022
Revised January 19, 2023
Accepted January 23, 2023